31 |
SHI P, HOU L P, JIN C B, et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes[J]. Journal of the American Chemical Society, 2022, 144(1): 212-218.
|
32 |
CHENG L W, LAN H, GAO Y, et al. Realizing low-temperature graphite-based rechargeable potassium-ion full battery[J]. Angewandte Chemie International Edition, 2024, 63(7): 2315624.
|
33 |
WANG Y Y, LAN H, DONG S, et al. A high-power rechargeable sodium-ion full battery operating at -40 ℃[J]. Advanced Functional Materials, 2024: 2315498.
|
34 |
YAMAMOTO T, NOHIRA T, HAGIWARA R, et al. Thermodynamic studies on Sn-Na alloy in an intermediate temperature ionic liquid NaFSA-KFSA at 363K[J]. Journal of Power Sources, 2013, 237: 98-103.
|
35 |
ZHANG B, ROUSSE G, FOIX D, et al. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries[J]. Advanced Materials, 2016, 28(44): 9824-9830.
|
36 |
CHEN M H, CHAO D L, LIU J L, et al. Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays[J]. Advanced Functional Materials, 2017, 27(12): doi: 10.1002/adfm.201606232.
|
37 |
陈宏善, 牛建中, 夏春谷, 等. 甲烷氧化偶联Na-W-Mn/SiO2催化剂的喇曼光谱[J]. 物理化学学报, 2000, 16(6): 543-546.
|
|
CHEN H S, NIU J Z, XIA C G, et al. Raman spectroscopy characterization of Na-W-Mn/SiO2 catalyst for oxidative coupling of methane[J]. Acta Physico-Chimica Sinica, 2000, 16(6): 543-546.
|
38 |
DAHUNSI O J, LI B M, GAO S Y, et al. One-step synthesis of Na-Sn alloy with internal 3D Na15Sn4 support for fast and stable Na metal batteries[J]. ACS Applied Energy Materials, 2022, 5(1): 20-26.
|
1 |
成伟翔, 黄兴文, 李越珠, 等. 层状金属二硫化物作为钠离子电池负极的研究进展[J]. 储能科学与技术, 2022, 11(10): 3062-3075.
|
|
CHENG W X, HUANG X W, LI Y Z, et al. Advances in layered metal disulfide as anode material for Na-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(10): 3062-3075.
|
2 |
WANG Y Y, HOU B H, GUO J Z, et al. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage[J]. Advanced Energy Materials, 2018, 8(18): 1703252.
|
3 |
KIM E Y, MOHAMMADIROUDBARI M, CHEN F, et al. A carbonyl and azo-based polymer cathode for low-temperature Na-ion batteries[J]. ACS Nano, 2024, 18(5): 4159-4169.
|
4 |
陈珂君, 范利君. 钴掺杂FeS2的可控制备及储钠特性研究[J]. 储能科学与技术, 2023, 12(10): 3056-3063.
|
|
CHEN K J, FAN L J. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances[J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063.
|
5 |
WANG H, YU D D, KUANG C W, et al. Alkali metal anodes for rechargeable batteries[J]. Chem, 2019, 5(2): 313-338.
|
6 |
LI Y Q, YANG Y, LU Y X, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158.
|
7 |
FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890.
|
8 |
梁君飞, 李艳梅, 袁浩, 等. 低温锂离子电池研究进展[J]. 北京航空航天大学学报, 2021, 47(11): 2155-2174.
|
|
LIANG J F, LI Y M, YUAN H, et al. Research progress of low-temperature lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2155-2174.
|
9 |
DENG T, JI X, ZOU L F, et al. Interfacial-engineering-enabled practical low-temperature sodium metal battery[J]. Nature Nanotechnology, 2022, 17: 269-277.
|
10 |
ZHANG W L, LU Y, WAN L, et al. Engineering a passivating electric double layer for high performance lithium metal batteries[J]. Nature Communications, 2022, 13: 2029.
|
11 |
FANG H Y, HUANG Y H, HU W, et al. Regulating ion-dipole interactions in weakly solvating electrolyte towards ultra-low temperature sodium-ion batteries[J]. Angewandte Chemie, 2024, 136(15): e202400539.
|
12 |
TAN L, HU R Z, ZHANG H Y, et al. Subzero temperature promotes stable lithium storage in SnO2[J]. Energy Storage Materials, 2021, 36: 242-250.
|
13 |
ZHU Q N, YU D D, CHEN J C, et al. A 110 Wh·kg-1 Ah-level anode-free sodium battery at -40 ℃[J]. Joule, 8(21): 482-495.
|
14 |
ZHAO Y, ADAIR K R, SUN X L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries[J]. Energy & Environmental Science, 2018, 11(10): 2673-2695.[LinkOut]
|
15 |
XIAO Y, XU R, YAN C, et al. A toolbox of reference electrodes for lithium batteries[J]. Advanced Functional Materials, 2022, 32(13): 2108449.
|
16 |
TANG Z, WANG H, WU P F, et al. Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(18): e202200475.
|
17 |
WANG J K, LIU J H, WANG L, et al. The significance of imperceptible current flowing through the lithium reference electrode in lithium ion batteries[J]. Journal of Power Sources, 2022, 546: 231953.
|
18 |
余永诗, 夏先明, 黄弘扬, 等. 钠金属负极人工界面保护层的研究进展[J]. 储能科学与技术, 2023, 12(5): 1380-1391.
|
|
YU Y S, XIA X M, HUANG H Y, et al. Research progress on sodium metal anode modified by artificial interface layer[J]. Energy Storage Science and Technology, 2023, 12(5): 1380-1391.
|
19 |
XIA X M, XU S T, TANG F, et al. A multifunctional interphase layer enabling superior sodium-metal batteries under ambient temperature and -40 ℃[J]. Advanced Materials, 2023, 35(11): 2209511.
|
20 |
ZHENG X Y, GU Z Y, FU J, et al. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries[J]. Energy & Environmental Science, 2021, 14(9): 4936-4947.
|
21 |
WANG Z Q, ZHENG X Y, LIU X Y, et al. Promoting fast Na ion transport at low temperatures for sodium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 40985-40991.
|
22 |
YAN L, ZHANG G F, WANG J, et al. Revisiting electrolyte kinetics differences in sodium ion battery: Are esters really inferior to ethers?[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6(4): 12523.
|
23 |
XU Y H, ZHU Y J, LIU Y H, et al. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries[J]. Advanced Energy Materials, 2013, 3(1): 128-133.
|
24 |
SHENG M H, ZHANG F, JI B F, et al. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J]. Advanced Energy Materials, 2017, 7(7): 1601963.
|
25 |
YANG B, WANG J, ZHU Y Y, et al. Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries[J]. Journal of Power Sources, 2021, 492: 229656.
|
26 |
XIE L J, TANG C, BI Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650.
|
27 |
江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840.
|
|
JIANG C F, HUANG J, XIE H B. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 825-840.
|
28 |
CHEN X Y, LIU C Y, FANG Y J, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150.
|
29 |
RUDOLA A, WRIGHT C J, BARKER J. Communication-surprisingly high fast charge volumetric capacities of hard carbon electrodes in sodium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(11): 110534.
|
30 |
YAO Y X, CHEN X, YAO N, et al. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(4): e202214828.
|