储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2425-2431.doi: 10.19799/j.cnki.2095-4239.2024.0121

• 储能系统与工程 • 上一篇    下一篇

储能锂离子电池高温诱发热失控特性研究

刘承鑫1,2(), 李梓衡1, 陈泽宇1(), 李鹏祥2, 陶庆一1   

  1. 1.东北大学机械工程与自动化学院,辽宁 沈阳 110819
    2.宁夏理工学院机械工程学院,宁夏 石嘴山 753000
  • 收稿日期:2024-02-18 修回日期:2024-04-26 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 陈泽宇 E-mail:2170180@stu.neu.edu.cn;chenzy@mail.neu.edu.cn
  • 作者简介:刘承鑫(2000—),男,硕士研究生,研究方向为储能系统电池安全技术,E-mail:2170180@stu.neu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51977029);宁夏自然科学基金项目(2023AA03373);辽宁省科技计划项目(2022JH2/101300225)

Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage

Chengxin LIU1,2(), Ziheng LI1, Zeyu CHEN1(), Pengxiang LI2, Qingyi TAO1   

  1. 1.School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, Liaoning, China
    2.School of Mechanical Engineering, Ningxia Institute of Technology, Shizuishan 753000, Ningxia, China
  • Received:2024-02-18 Revised:2024-04-26 Online:2024-07-28 Published:2024-07-23
  • Contact: Zeyu CHEN E-mail:2170180@stu.neu.edu.cn;chenzy@mail.neu.edu.cn

摘要:

储能系统是新型电力系统的重要支撑,锂离子电池储能是当前主流发展方向之一。电池安全性是制约锂电储能系统的重要技术瓶颈。本文研究了锂离子电池高温诱发热失控的电热响应特性,设计了在自然对流换热情况下的逐级升温实验,基于谢苗诺夫理论对电池不同阶梯温度点的失效规律进行了分析,结合电池内部副反应探究了各温度区间的电压变化、电压平均下降率以及自生热特性。研究表明电池在140~160 ℃区间爆发热失控、最高温度达到464.6 ℃,热失控过程中的破裂漏气现象对最高温度有着显著影响;当电池荷电状态降低为50%时,电池可由热失控转为功能性失效。研究结论为进一步的安全管理与热失控抑制研究提供了基础。

关键词: 锂离子电池, 电池安全, 热失控, 过温故障, 热分析

Abstract:

Energy storage systems play a crucial role in the advancement of modern electric power systems. Among these, lithium-ion battery energy storage is a key area of focus. A technical challenge hindering the application of lithium-ion batteries in energy storage is safety. This paper explores the electrical and thermal characteristics of battery thermal runaway triggered by overheating. A stepwise heating experiment, employing natural convection heat transfer, was conducted to analyze the failure modes of batteries at various temperature thresholds using the Semenov theory. This research examines changes in voltage, the average voltage drop rate, and self-heating characteristics across different temperatures, considering internal side reactions. Results indicate that thermal runaway occurs at 140—160 ℃, peaking at a maximum temperature of 464.6 ℃. The phenomena of rupture and gas leakage during the thermal runaway considerably influence the peak temperature observed. Furthermore, when the state of charge of the battery is reduced to 50%, the battery transitions from thermal runaway to functional failure. These findings provide a foundation for future research on safety management and mitigation of thermal runaway in lithium-ion batteries.

Key words: lithium-ion battery, battery safety, thermal runaway, overheat fault, thermal analysis

中图分类号: