1 |
HUANG Z H, YU Y, DUAN Q L, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778.
|
2 |
JIN C Y, SUN Y D, WANG H B, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling[J]. Applied Energy, 2022, 312: 118760.
|
3 |
JIA Z Z, WANG S P, QIN P, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791.
|
4 |
程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933.
|
|
CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3): 923-933.
|
5 |
李谦, 于金山, 刘盛终, 等. 不同因素影响下锂离子电池热失控演变特征及危害性综述[J]. 消防科学与技术, 2023, 42(11): 1482-1487.
|
|
LI Q, YU J S, LIU S Z, et al. Review on the characteristics and hazards of lithiumion battery thermal runaway under various conditions[J]. Fire Science and Technology, 2023, 42(11): 1482-1487.
|
6 |
史波波, 沈王赵男, 王志, 等. 液氮抑制外部加热和过充锂电池模组热失控[J]. 中国安全科学学报, 2023, 33(10): 129-136.
|
|
SHI B B, SHEN W, WANG Z, et al. Liquid nitrogen suppresses thermal runaway of lithium-ion battery modules under external heating and overcharge[J]. China Safety Science Journal, 2023, 33(10): 129-136.
|
7 |
CAO X, DU J H, QU C, et al. An early diagnosis method for overcharging thermal runaway of energy storage lithium batteries[J]. Journal of Energy Storage, 2024, 75: 109661.
|
8 |
WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: 120072.
|
9 |
HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: 121885.
|
10 |
REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573.
|
11 |
ZHANG G X, WEI X Z, TANG X, et al. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110790.
|
12 |
齐创, 朱艳丽, 高飞, 等. 过充电条件下锂离子电池热失控数值模拟[J]. 北京理工大学学报, 2017, 37(10): 1048-1055.
|
|
QI C, ZHU Y L, GAO F, et al. Thermal runaway analysis of lithium-ion battery with overcharge[J]. Transactions of Beijing Institute of Technology, 2017, 37(10): 1048-1055.
|
13 |
REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340.
|
14 |
LIU W, ZHAO F, LIU S, et al. Chemical analysis of the cause of thermal runaway of lithium-ion iron phosphate batteries [J]. Journal of The Electrochemical Society, 2021, 168(6): doi: 10.1149/1945-7111/ac0554.
|
15 |
MAO B, LIU C, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode [J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717.
|
16 |
ZHOU Z Z, ZHOU X D, JU X Y, et al. Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules[J]. Renewable Energy, 2023, 207: 13-26.
|
17 |
LI Z J, ZHANG P H, SHANG R X. Effects of heating position on the thermal runaway propagation of a lithium-ion battery module in a battery enclosure[J]. Applied Thermal Engineering, 2023, 222: 119830.
|
18 |
XU C S, WANG H B, JIANG F C, et al. Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model[J]. Energy, 2023, 268: 126646.
|
19 |
KWAK E, KIM J H, HONG S H, et al. Detailed modeling investigation of thermal runaway pathways of a lithium iron phosphate battery[J]. International Journal of Energy Research, 2022, 46(2): 1146-1167.
|
20 |
国家市场监督管理总局, 国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB 38031—2020[S]. 北京: 中国标准出版社, 2020.
|
|
Standardization Administration of the People's Republic of China. Electric vehicles traction battery safety requirements: GB 38031—2020[S]. Beijing: Standards Press of China, 2020.
|
21 |
PENG P, JIANG F M. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1008-1016.
|
22 |
FENG X N, HE X M, OUYANG M, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNiCoMnO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91.
|
23 |
YU Y, HUANG Z H, MEI W X, et al. Preventing effect of different interstitial materials on thermal runaway propagation of large-format lithium iron phosphate battery module[J]. Journal of Energy Storage, 2023, 63: 107082.
|