1 |
WEI F L, ZHANG Q P, ZHANG P, et al. Review—Research progress on layered transition metal oxide cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(5): 050524.
|
2 |
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
|
3 |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 18013.
|
4 |
RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: 113295.
|
5 |
张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110.
|
|
ZHANG K, XU Y L. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 86-110.
|
6 |
ZHOU R, LU J Y, WANG G S, et al. Thermal management of hybrid energy storage for electromagnetic launch[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1459-1464.
|
7 |
WU F, ZHU N, BAI Y, et al. Highly safe ionic liquid electrolytes for sodium-ion battery: Wide electrochemical window and good thermal stability[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21381-21386.
|
8 |
栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料: 研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920.
|
|
LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920.
|
9 |
WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
|
10 |
CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38): 2001310.
|
11 |
HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
|
12 |
DAVID L, BHANDAVAT R, SINGH G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770.
|
13 |
RAMESH A, TRIPATHI A, BALAYA P. A mini review on cathode materials for sodium-ion batteries[J]. International Journal of Applied Ceramic Technology, 2021, doi:10.1111/ijac.13920.
|
14 |
LU J L, ZHANG J W, HUANG Y Y, et al. Advances on layered transition-metal oxides for sodium-ion batteries: a mini review[J]. Frontiers in Energy Research, 2023, 11: 10.3389/fenrg.2023. 1246327.
|
15 |
LIU Y H, ZHANG Y H, MA J, et al. Challenges and strategies toward practical application of layered transition metal oxide cathodes for sodium-ion batteries[J]. Chemistry of Materials, 2024, 36(1): 54-73.
|
16 |
WANG L, TIAN H L, YAO X, et al. Research progress and modification measures of anode and cathode materials for sodium-ion batteries[J]. ChemElectroChem, 2024, 11(1): doi: 10.1002/celc.202300414.
|
17 |
DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1): 81-85.
|
18 |
WANG Q, CHU S Y, GUO S H. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2167-2176.
|
19 |
LIU Q N, HU Z, CHEN M Z, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, 15(32): e1805381.
|
20 |
SUN Y, GUO S H, ZHOU H S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy & Environmental Science, 2019, 12(3): 825-840.
|
21 |
JAYAMKONDAN Y, PENKI T R, NAYAK P K. Recent advances and challenges in the development of advanced positive electrode materials for sustainable Na-ion batteries[J]. Materials Today Energy, 2023, 36: 101360.
|
22 |
KIM H J, VORONINA N, KÖSTER K, et al. Synergetic impact of dual substitution on anionic-cationic activity of P2-type sodium manganese oxide[J]. Energy Storage Materials, 2024, 66: 103224.
|
23 |
YANG C S, PENG X, YU J L, et al. Engineering crystal-facet modulation to obtain stable Mn-based P2-layered oxide cathodes for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 629(Pt B): 1061-1067.
|
24 |
HOU P Y, LI F, WANG Y Y, et al. Mitigating the P2-O2 phase transition of high-voltage P2-Na2/3[Ni1/3Mn2/3]O2 cathodes by cobalt gradient substitution for high-rate sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9): 4705-4713.
|
25 |
HOU P, DONG M H, LIN Z Z, et al. Alleviating the Jahn-Teller distortion of P3-type manganese-based cathodes by compositionally graded structure for sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, doi: 10.1021/cen-09025-ad15.
|
26 |
CHENG C, CHEN C, CHU S Y, et al. Enhancing the reversibility of lattice oxygen redox through modulated transition metal-oxygen covalency for layered battery electrodes[J]. Advanced Materials, 2022, 34(20): 2201152.
|
27 |
LI X L, MA C, ZHOU Y N. Transition metal vacancy in layered cathode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2023, 29(22): 2203586.
|
28 |
DING C S, CHEN Z, CAO C X, et al. Advances in Mn-based electrode materials for aqueous sodium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1): 192.
|
29 |
LIU X S, ZHONG G M, XIAO Z M, et al. Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries[J]. Nano Energy, 2020, 76: 104997.
|
30 |
SUN X, JI X Y, XU H Y, et al. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties[J]. Electrochimica Acta, 2016, 208: 142-147.
|