储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1474-1486.doi: 10.19799/j.cnki.2095-4239.2023.0895
收稿日期:
2023-12-12
修回日期:
2024-01-01
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
张福华
E-mail:2157798125@qq.com;fhzhang@shmtu.edu.cn
作者简介:
赵毅伟(2000—),男,硕士研究生,研究方向为钠离子电池,E-mail:2157798125@qq.com;
Yiwei ZHAO(), Fuhua ZHANG(), Shun YAN, Kun DING, Haifeng LAN, Hui LIU
Received:
2023-12-12
Revised:
2024-01-01
Online:
2024-05-28
Published:
2024-05-28
Contact:
Fuhua ZHANG
E-mail:2157798125@qq.com;fhzhang@shmtu.edu.cn
摘要:
发展具有快充性能(即超高倍率性能)的钠离子电池是目前储能领域研究的重点和热点。普鲁士蓝及其类似物(PBAs)具有有利于钠离子储存和扩散的开放式三维骨架结构,已经被证明作为钠离子电池正极材料具有巨大的潜力。然而,目前所制备的PBAs大多数存在结构缺陷和结晶水,以及其本身较差的电子电导率,导致其倍率性能不理想。本文针对PBAs导电性差的问题,从离子导电和电子导电两个方面进行讨论,首先分析了PBAs中结构缺陷以及结晶水的存在对离子导电的影响以及其本身价键结构对电子电导的影响。综述了近期对于提高PBAs导电性的相关研究:①改变晶体结构,通过减少PBAs晶体内部缺陷及结晶水,从而降低钠离子迁移距离及减少阻碍;②设计特殊的PBAs晶体结构,能有效减少钠离子传输路径;③采用复合导电材料,能构建新的电子运输途径。最后对提高PBAs导电性的三种策略进行了总结和展望,指出应该在优化PBAs结构的基础上,复合导电材料,同时增强离子电导和电子电导,以期达到最佳的倍率性能。
中图分类号:
赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486.
Yiwei ZHAO, Fuhua ZHANG, Shun YAN, Kun DING, Haifeng LAN, Hui LIU. Research progress on the conductivity of Prussian blue sodium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2024, 13(5): 1474-1486.
表1
钠离子电池普鲁士蓝正极材料的电化学性能"
Samples | Cyclability/(cycles,retention%@mA/g) | Rata capacity/(mAh/g@mA/g) | Refs |
---|---|---|---|
Na1.81Fe[Fe(CN)6]0.83·2.04H2O | 3700,79.7%@700 | 77@1400 | [ |
Na1.70Fe2.15(CN)6 | 500,63.4%@85 | 75@850 | [ |
Na1.58Fe[Fe(CN)6]0.87·2.38H2O | 3000,64.9%@750 | 90.6@1500 | [ |
Na1.76FeFe(CN)6 | 2000,82.5%@500 | 80@2000 | [ |
Na1.11NiFe(CN)6·0.71H2O | 5000,83.2%@500 | 70.9@4000 | [ |
Na1.38Ni0.07Mn0.93[Fe(CN)6]0.82·□0.18·1.4H2O | 600,82.3%@50 | 52@3200 | [ |
(K0.47Fe4 [Fe(CN)6]3.14)@(MoSO1.7)0.44·18H2O | 10000,98%@10000 | 85@10000 | [ |
Na0.647Fe[Fe(CN)6]0.93·□0.07·2.6H2O | 2000,90%@2000 | 77.5@9000 | [ |
PBGO | 800,91.3%@500 | 68.0@4000 | [ |
PB@PANI | 500,93.4%@100 | 102.5@1000 | [ |
NaFeFe(CN)6@Ti3C2T x | 1000,69.7%@1000 | 92.0@1000 | [ |
Na1.6Mn[Fe(CN)6]0.9@Na3(VOPO4)2F | 500,84.3%@100 | 91.4@1000 | [ |
Na1.36FeFe(CN)6@PDA | 500,77.4%@200 | 72.6@5000 | [ |
1 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. | |
2 | FANG Y J, CHEN Z X, XIAO L F, et al. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J]. Small, 2018, 14(9): 10.1002/smll.201703116. |
3 | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1702619. |
4 | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. |
5 | 王跃生, 容晓晖, 徐淑银, 等. 室温钠离子储能电池电极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 268-284. |
WANG Y S, RONG X H, XU S Y, et al. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 268-284. | |
6 | ESTELRICH J, BUSQUETS M A. Prussian blue: A nanozyme with versatile catalytic properties[J]. International Journal of Molecular Sciences, 2021, 22(11): 5993. |
7 | WANG B Q, HAN Y, WANG X, et al. Prussian blue analogs for rechargeable batteries[J]. iScience, 2018, 3: 110-133. |
8 | GAO Y T, HUANG Y, PAN H G, et al. Towards defect-free Prussian blue-based battery electrodes[J]. Journal of Alloys and Compounds, 2023, 950: 169886. |
9 | YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248. |
10 | KEVIN H, SAMUEL W, ISAAC C, et al. Prussian blue analogs as battery materials[J]. ECS Meeting Abstracts, 2022, 2(59):2210-2210. |
11 | YAN C X, ZHAO A L, ZHONG F P, et al. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode[J]. Electrochimica Acta, 2020, 332: 135533. |
12 | PENG F W, YU L, GAO P Y, et al. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes[J]. Journal of Materials Chemistry A, 2019, 7(39): 22248-22256. |
13 | XU Y, WAN J, HUANG L, et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries[J]. Advanced Energy Materials, 2019, 9(4): 1803158. |
14 | WANG L, SONG J, QIAO R M, et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2548-2554. |
15 | MING H, TORAD N L K, CHIANG Y D, et al. Size- and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process[J]. CrystEngComm, 2012, 14(10): 3387. |
16 | YOU Y, WU X L, YIN Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647. |
17 | LIM C Q X, WANG T, ONG E W Y, et al. High-capacity sodium–prussian blue rechargeable battery through chelation-induced nano-porosity[J]. Advanced Materials Interfaces, 2020, 7(21): 2000853. |
18 | PIERNAS-MUÑOZ M J, CASTILLO-MARTÍNEZ E, BONDARCHUK O, et al. Higher voltage plateau cubic Prussian White for Na-ion batteries[J]. Journal of Power Sources, 2016, 324: 766-773. |
19 | SU D W, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29(1): 1604007-1604015. |
20 | PENG J, ZHANG W, HU Z, et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries[J]. Nano Letters, 2022, 22(3): 1302-1310. |
21 | PENG J, GAO Y, ZHANG H, et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2- xMnFe(CN)6 cathodes for all-climate sodium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(32): e202205867. |
22 | WANG W L, GANG Y, PENG J, et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2022, 32(25): 2111727. |
23 | WANG J, LI L, ZUO S L, et al. Synchronous crystal growth and etching optimization of Prussian blue from a single iron-source as high-rate cathode for sodium-ion batteries[J]. Electrochimica Acta, 2020, 341: 136057. |
24 | HAN J J, HU Y N, HAN Q H, et al. Synthesis of high-specific-capacity Prussian blue analogues for sodium-ion batteries boosted by grooved structure[J]. Journal of Alloys and Compounds, 2023, 950: 169928. |
25 | REN W H, QIN M S, ZHU Z X, et al. Activation of sodium storage sites in Prussian blue analogues via surface etching[J]. Nano Letters, 2017, 17(8): 4713-4718. |
26 | HUANG Y X, XIE M, WANG Z H, et al. A chemical precipitation method preparing hollow-core-shell heterostructures based on the Prussian blue analogs as cathode for sodium-ion batteries[J]. Small, 2018, 14(28): e1801246. |
27 | WANG J G, ZHANG Z Y, ZHANG X Y, et al. Cation exchange formation of Prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors[J]. Nano Energy, 2017, 39: 647-653. |
28 | FU H Y, XIA M Y, QI R J, et al. Improved rate performance of Prussian blue cathode materials for sodium ion batteries induced by ion-conductive solid-electrolyte interphase layer[J]. Journal of Power Sources, 2018, 399: 42-48. |
29 | KANG J E, VO T N, AHN S K, et al. Unique two-dimensional Prussian blue nanoplates for high-performance sodium-ion battery cathode[J]. Journal of Alloys and Compounds, 2023, 939: 168773. |
30 | MORANT-GINER M, SANCHIS-GUAL R, ROMERO J, et al. Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium-and potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(27): 1706125. |
31 | JIANG M W, REN L B, HOU Z D, et al. A superior sodium-ion battery based on tubular Prussian blue cathode and its derived phosphide anode[J]. Journal of Power Sources, 2023, 554: 232334. |
32 | JIANG Y Z, YU S L, WANG B Q, et al. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode[J]. Advanced Functional Materials, 2016, 26(29): 5315-5321. |
33 | QI W T, JIANG W, WANG M L, et al. Capacitance-dominated hierarchical porous three-dimensional carbon framework enhanced Prussian blue analogue as superior cathode for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2022, 47(48): 20942-20950. |
34 | WAN P, XIE H, ZHANG N, et al. Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode[J]. Advanced Functional Materials, 2020, 30(38): 2002624. |
35 | LEE S Y, PARK J Y, KIM H J, et al. Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density[J]. Journal of Alloys and Compounds, 2022, 898: 162952. |
36 | KIM D S, YOO H, PARK M S, et al. Boosting the sodium storage capability of Prussian blue nanocubes by overlaying PEDOT: PSS layer[J]. Journal of Alloys and Compounds, 2019, 791: 385-390. |
37 | TANG Y, ZHANG W X, XUE L H, et al. Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6]cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(16): 6036-6041. |
38 | ZHANG Q, FU L, LUAN J Y, et al. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J]. Journal of Power Sources, 2018, 395: 305-313. |
39 | LUO Y, YANG L X, LIU Q, et al. In situ polyaniline coating of Prussian blue as cathode material for sodium-ion battery[J]. Royal Society Open Science, 2021, 8(11): 211092. |
40 | SYED MOHD FADZIL S A F, WOO H J, AZZAHARI A D, et al. Sodium-rich Prussian blue analogue coated by poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate as superior cathode for sodium-ion batteries[J]. Materials Today Chemistry, 2023, 30: 101540. |
41 | CHUN J Y, WANG X L, WEI C L, et al. Flexible and free-supporting Prussian blue analogs/MXene film for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2023, 576: 233165. |
42 | PENG F W, YU L, YUAN S Q, et al. Enhanced electrochemical performance of sodium manganese ferrocyanide by Na3(VOPO4)2F coating for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37685-37692. |
43 | LIU Y, HE D D, CHENG Y J, et al. A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery[J]. Small, 2020, 16(11): e1906946. |
44 | NIE P, YUAN J R, WANG J, et al. Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20306-20312. |
[1] | 卢俊杰, 彭丹, 倪文静, 杨媛, 汪靖伦. 锂/氟化碳电池电解液的研究进展[J]. 储能科学与技术, 2024, 13(5): 1487-1495. |
[2] | 江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840. |
[3] | 李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. |
[4] | 蔡浩然, 闫利珏, 杨旭, 潘慧霖. O3/P2-Na x Ni1/3Co1/3Mn1/3O2 复合相正极材料的结构演变与储钠性能[J]. 储能科学与技术, 2023, 12(9): 2707-2714. |
[5] | 张吉禄, 董育辰, 宋强, 袁思鸣, 郭孝东. 多晶及单晶高镍三元材料LiNi0.9Co0.05Mn0.05O2 的可控制备及其电化学储锂特性[J]. 储能科学与技术, 2023, 12(8): 2382-2389. |
[6] | 张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381. |
[7] | 张鼎, 叶子贤, 刘镇铭, 易群, 史利娟, 郭慧娟, 黄毅, 王莉, 何向明. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490. |
[8] | 边煜华, 刘朝孟, 高宣雯, 李健国, 王达, 李尚倬, 骆文彬. 醚基电解液中CoS2/NC作为钠离子电池高性能阳极的原因分析[J]. 储能科学与技术, 2023, 12(5): 1500-1509. |
[9] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
[10] | 郭俊朋, 孙琦, 陈月芳, 赵玉文, 杨欢, 张志佳. 简便制备三维多级Fe3O4/碳纳米纤维一体化电极及其储钠性能研究[J]. 储能科学与技术, 2023, 12(5): 1469-1479. |
[11] | 周亚男, 滑纬博, 周德重. O3-NaNi0.4Fe0.2Mn0.4O2 正极Na+ 传输动力学及相变机制[J]. 储能科学与技术, 2023, 12(4): 1011-1017. |
[12] | 苑雪, 李洪基, 白文慧, 李正曦, 杨立滨, 王恺, 陈哲. 生物质衍生碳基材料在钠离子电池负极中的应用[J]. 储能科学与技术, 2023, 12(3): 721-742. |
[13] | 戴宇成, 王增鹏, 刘凯豹, 赵佳腾, 刘昌会. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458. |
[14] | 蔡阳, 周泽宇, 黄晓燕, 邓杰泓, 赵福云. 基于翅片结构优化的环境温差能采集热储特性分析[J]. 储能科学与技术, 2023, 12(12): 3780-3788. |
[15] | 陈娜, 李安琪, 郭子祥, 张钰哲, 秦学. 钠离子电池普鲁士蓝材料结构构建及优化的研究进展[J]. 储能科学与技术, 2023, 12(11): 3340-3351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||