储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 883-897.doi: 10.19799/j.cnki.2095-4239.2024.1121

• 储能新锐科学家专刊 • 上一篇    下一篇

钠离子电池锡基合金类负极材料研究进展

陈钊1(), 梁沁沁2, 李玉婷1,3, 谢飞1(), 唐彬2, 李建新2, 陆雅翔1, 陈爱兵3, 胡勇胜1()   

  1. 1.中国科学院物理研究所,北京 100190
    2.广西电力装备智能控制与运维重点实验室,广西电网有限责任公司电力科学研究院,广西 南宁 530023
    3.河北科技大学化学与制药工程学院,河北 石家庄 050091
  • 收稿日期:2024-11-27 修回日期:2024-12-10 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 谢飞,胡勇胜 E-mail:zchen@iphy.ac.cn;fxie@iphy.ac.cn;yshu@iphy.ac.cn
  • 作者简介:陈钊(1998—),男,博士研究生,研究方向为钠离子负极材料及界面设计,E-mail:zchen@iphy.ac.cn
  • 基金资助:
    国家重点研发计划(2022YFB3807800);国家自然科学基金项目(22339001);中国科学院国际伙伴计划(005GJHZ2023021MI);京津冀基础研究合作专项(2024208097);广西电网电力科学研究院科技项目(GXKJXM20210260);江苏省碳达峰碳中和科技创新专项(BE2022002-5)

Recent progress of tin-based alloy-type anode materials in Na-ion batteries

Zhao CHEN1(), Qinqin LIANG2, Yuting LI1,3, Fei XIE1(), Bin TANG2, Jianxin LI2, Yaxiang LU1, Aibing CHEN3, Yongsheng HU1()   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Electric Power Research Institute of Guangxi Power Grid Co. , Ltd. , Nanning 530023, Guangxi, China
    3.school of chemical and pharmaceutical engineer, Hebei University of Science and Technology, Shijiazhuang 050091, Hebei, China
  • Received:2024-11-27 Revised:2024-12-10 Online:2025-03-28 Published:2025-04-28
  • Contact: Fei XIE, Yongsheng HU E-mail:zchen@iphy.ac.cn;fxie@iphy.ac.cn;yshu@iphy.ac.cn

摘要:

负极材料是钠离子电池的重要组成部分,承担着接收并储存钠离子的重任从而影响电池的储能密度、功率密度、循环稳定性等。以锡为代表的合金类负极材料具有合适的电位和较高的理论比容量,是钠离子电池体系极具竞争力的负极材料。然而锡基负极,像合金类负极一样,具有钠化体积膨胀严重致颗粒粉化并失去电接触、固态电解质中间相不稳定、循环稳定性不佳等问题。本文通过对近期相关文献的分析,评述了钠离子电池领域锡基负极的研究现状,包括纯锡、锡碳复合、氧化锡、硫化锡、硒化锡、磷化锡等材料,并揭示了锡基合金类负极容量衰减的共性以及应对的改性策略。综合分析表明,针对锡基负极材料特点的活性物质的纳米化、相变过程调控和结构设计;对导电碳和黏结剂等非活性物质的改性与复合结构设计;电解质设计以及超高载量的锡箔形式负极等策略确实可以提升比容量、载量、倍率性能和循环稳定性等指标。众多策略对将在未来应用于钠离子电池体系,实现稳定、高倍率性能和高能量密度的锡基负极材料提出了合理构想。

关键词: 钠离子电池, 锡基负极, 合金化反应

Abstract:

Anode materials are crucial components of Na-ion batteries, responsible for storing Na ions and influencing battery performance. Tin-based alloy anodes offer suitable potentials and high theoretical capacities but suffer from significant volume expansion during sodiation, which leads to particle pulverization, loss of electrical contact, unstable solid electrolyte interface (SEI) formation, and poor cycling stability. This review analyzes recent literature on tin-based alloy anodes in Na-ion batteries, including pure tin, tin-carbon composites, tin oxides, sulfides, selenides, and phosphides. Common causes of capacity degradation and corresponding modification strategies are elucidated. A comprehensive analysis indicates that strategies including nanostructuring the active material, controlling the phase transition process, designing the active material structure, modifying conductive carbon and binders, designing composite structures for inactive materials, optimizing the electrolyte, and employing high-loading tin foil anodes can effectively enhance specific capacity, areal loading, rate performance, and cycling stability. These strategies provide rational approaches for developing stable, high-rate, and high-energy-density tin-based alloy anodes for future Na-ion battery applications.

Key words: Na-ion batteries, tin-based anode, alloying reaction

中图分类号: