储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2649-2664.doi: 10.19799/j.cnki.2095-4239.2024.0180

• 储能材料与器件 • 上一篇    下一篇

钠离子电池锑基及铋基金属负极材料研究进展

姚远(), 宗若奇, 盖建丽()   

  1. 天目湖先进储能技术研究院有限公司,江苏 常州 213300
  • 收稿日期:2024-03-04 修回日期:2024-05-07 出版日期:2024-08-28 发布日期:2024-08-15
  • 通讯作者: 盖建丽 E-mail:yaoyuan@aesit.com.cn;gaijl669@126.com
  • 作者简介:姚远(1996—),男,硕士,研究方向为二次电池电解液开发及失效分析,E-mail:yaoyuan@aesit.com.cn
  • 基金资助:
    国家重点研发计划(2022YFB2402500)

Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries

Yuan YAO(), Ruoqi ZONG, Jianli GAI()   

  1. Tianmu Lake Institute of Advanced Energy Storage Technologies, Changzhou 213300, Jiangsu, China
  • Received:2024-03-04 Revised:2024-05-07 Online:2024-08-28 Published:2024-08-15
  • Contact: Jianli GAI E-mail:yaoyuan@aesit.com.cn;gaijl669@126.com

摘要:

钠离子电池技术因钠资源的储量优势和制造过程中的成本优势引起了广泛关注。以硬碳为代表的碳材料是目前最常用的负极材料,但其较低的理论容量限制了钠离子电池能量密度的提升。锑和铋可通过与钠离子发生可逆的合金化反应实现储钠,具有高理论容量、高稳定性和高电导率,是极具潜力的新型负极材料。但由于不同合金相间的体积差异,锑和铋的钠化/脱钠过程伴随较大的体积膨胀,表现出结构稳定性较差、电极界面膜破坏、电解液持续消耗等问题,限制了产业化应用进程。本文综述了锑基及铋基金属负极材料的储钠机理、改性策略及方法。目前锑基及铋基金属负极材料的改性策略主要有调控结构和构建复合材料两种:通过调控结构策略可以减小颗粒尺寸、调整颗粒形貌,利用纳米效应减小材料应变;通过构建复合材料策略,可以将合金型负极与碳基材料等复合,利用核壳等特殊结构缓冲体积变化。此外,本文以铋锑合金为例对二元合金负极进行了介绍。最后,对复合材料的设计、规模化制造方法的开发、界面特性的研究等未来的研究方向进行了展望。

关键词: 钠离子电池, 合金, 负极材料, 锑,

Abstract:

Sodium-ion batteries have attracted widespread attention due to their capacity and cost advantages. Carbon-based materials, represented by hard carbon, are currently the most used anode materials, but their limited theoretical capacity restrains the improvement in energy density for sodium-ion batteries. Antimony and bismuth are capable of reversibly alloying with Na+ and are highly promising anode materials owing to their high theoretical capacity, stability, and conductivity. However, due to the volume difference between different alloy phases, antimony and bismuth exhibit large volume expansion during sodiation/desodiation, which causes problems such as poor structural stability, destruction of the solid electrode interface (SEI), and continuous consumption of the electrolyte, limiting the industrial applications of these systems. This review summarizes the sodium storage mechanism, modification strategies, and methods for obtaining antimony- and bismuth-based metallic anode materials. At present, the modification strategies for antimony- and bismuth-based metallic anode materials mainly include fabricating nanostructures and composite materials. By building nanostructures, the particle size can be reduced, the particle morphology can be adjusted, and the strain can be reduced due to nano-effects. When using composite materials, alloy-based anodes can be can be combined with carbon-based and other materials to buffer volume changes using special structures such as core-shell systems. In addition, this review considers antimony bismuth alloy as an example to discuss binary alloy anodes. Finally, future research considerations such as the design of composite materials, development of large-scale manufacturing methods, and research on interfacial characteristics are proposed.

Key words: sodium-ion batteries, alloy, anode materials, antimony, bismuth

中图分类号: