储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1775-1785.doi: 10.19799/j.cnki.2095-4239.2024.0002

• 储能材料与器件 • 上一篇    下一篇

高倍率钠离子电池炭包覆纳米铋负极材料

李丹1,2(), 马铁2, 刘汉浩1, 郭丽2   

  1. 1.中北大学材料科学与工程学院
    2.中北大学先进能源材料与系统研究院,山西 太原 030051
  • 收稿日期:2024-01-02 修回日期:2024-01-17 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 李丹 E-mail:lidan@nuc.edu.cn
  • 作者简介:李丹(1992—),女,博士,讲师,研究方向为纳米材料结构设计及二次离子电池应用研究,E-mail:lidan@nuc.edu.cn
  • 基金资助:
    山西省自然科学研究面上项目(202203021221116);山西省自然科学研究青年项目(201901D211215)

Carbon-coated nano-bismuth as high-rate sodium anode material

Dan LI1,2(), Tie MA2, Hanhao LIU1, Li GUO2   

  1. 1.School of Materials Science and Engineering, North University of China
    2.Advanced Energy Materials and Systems Research Institute North University of China, Taiyuan 030051, Shanxi, China
  • Received:2024-01-02 Revised:2024-01-17 Online:2024-06-28 Published:2024-06-26
  • Contact: Dan LI E-mail:lidan@nuc.edu.cn

摘要:

铋作为新型钠离子电池负极材料,因其出色的离子动力学特性和长循环寿命而备受瞩目。铋基材料在能量密度和充放电效率方面展现出巨大潜力,但在应用中也面临体积膨胀和固态电解质层稳定性方面的挑战,需要通过纳米结构设计、界面工程以及碳包覆等方法来改善其导电性和结构稳定性。在这项工作中,以金属铋有机骨架材料为前体,通过一步炭化法得到了炭包覆铋纳米复合材料。铋颗粒通过C—O—Bi界面交互作用牢固锚定在石墨烯表面,在高电流密度下展现出优异的容量保持能力和稳定的循环性能。结果显示,由赝电容控制的钠离子存储过程有助于构建稳定的固态电解质界面膜并加速离子扩散,从而提高电池的循环稳定性和充放电效率。而铋与石墨烯界面较强的化学键结合有助于维持金属颗粒的结构稳定,缓冲体积膨胀,并加速二者之间的电子扩散,提高材料的电化学活性。这些发现不仅提供了改善电池负极材料的高效方法,还为理解和优化负极材料提供了新视角,对于设计和开发高性能钠离子电池负极材料具有重要的参考意义。

关键词: 钠离子电池, 负极, 金属有机骨架, 炭包覆, 铋基材料

Abstract:

Bismuth has emerged as a promising anode material for sodium-ion batteries, attracting attention due to its superior ion kinetics and extended cycle life. Bismuth-based materials exhibit significant potential for enhancing energy density and charge-discharge efficiency. However, their application faces challenges due to volume expansion and the stability of the solid electrolyte interphase. These issues necessitate the development of improvements in electrical conductivity and structural stability through nanostructure design, interface engineering, and carbon coating techniques. In this study, we synthesized carbon-coated bismuth nanomaterial using a one-step carbonization method, employing a metal–organic framework of bismuth as the precursor. The bismuth particles were securely anchored to the graphene surface via C-O-Bi interfacial interactions, displaying exceptional capacity retention and stable cycling performance at high current densities. The sodium-ion storage process, dominated by pseudocapacitance, facilitates the formation of a stable solid electrolyte interphase film and enhances ion diffusion, thus improving the cycle stability and charge-discharge efficiency of the battery. The robust chemical bonds at the bismuth-graphene interfaces help maintain the structural integrity of the metal particles, buffer against volume expansion, and expedite electron diffusion, thereby boosting the electrochemical activity of the material. These findings not only provide an effective method for enhancing anode materials for batteries but also offer a new perspective for the understanding and optimization of anode materials, with significant implications for the design and development of high-performance sodium-ion battery anodes.

Key words: sodium ion battery, anode, metal-organic skeleton, carbon coating, bismuth-based material

中图分类号: