• •
李昱1(), 李丹丹2, 谢飞1(
), 唐彬2, 容晓晖1,2, 梁沁沁2, 胡勇胜1(
)
收稿日期:
2024-11-19
修回日期:
2024-11-25
通讯作者:
谢飞,胡勇胜
E-mail:3510709270@qq.com;fxie@iphy.ac.cn;yshu@iphy.ac.cn
作者简介:
李昱(1998—),男,博士研究生(在读),研究方向为钠离子电池界面,E-mail:3510709270@qq.com
基金资助:
Yu Li1(), Dandan Li2, Fei Xie1(
), bin Tang2, Xiaohui Rong1,2, Qinqin Liang2, Yongsheng Hu1(
)
Received:
2024-11-19
Revised:
2024-11-25
Contact:
Fei Xie, Yongsheng Hu
E-mail:3510709270@qq.com;fxie@iphy.ac.cn;yshu@iphy.ac.cn
摘要:
钠离子电池凭借原材料来源广泛、成本低廉等优势,被视作下一代非常重要的电化学储能技术。预钠化技术可通过引入额外的钠源,对首周充电时因生成界面而不可逆消耗的钠离子进行有效补充,进而有效提升电池的循环寿命与能量密度,在钠离子电池实际生产应用中具有重要价值。预钠化技术主要分为负极预钠化技术和正极预钠化技术,正极预钠化技术里的自牺牲型补钠剂预混法,因其操作简便,无需额外增添设备,有利于大规模推广。本文首先简单介绍了补钠剂的分类,然后梳理了这一方法在实际生产应用过程中存在的问题,具体涵盖生产储存环节的安全性与稳定性问题、电极制造过程中补钠剂的碱性以及粒径大小的问题,还有电池循环时分解电位过高、分解产物及其分解后对极片产生的影响等问题。随后本文归纳了近年来预钠化相关文献与专利中对应的解决方案,还对这一方法在无负极钠电池中的应用情况作了介绍。最后,本文对未来补钠剂的开发提出了相应的设计原则,并有望为正极预钠化技术的应用提供一定的指导与启发。
中图分类号:
李昱, 李丹丹, 谢飞, 唐彬, 容晓晖, 梁沁沁, 胡勇胜. 钠离子电池正极预钠化技术进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2024.1085.
Yu Li, Dandan Li, Fei Xie, bin Tang, Xiaohui Rong, Qinqin Liang, Yongsheng Hu. Recent progress of cathode presodiation strategies in sodium ion batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.1085.
1 | DUNN B, KAMATH H, TARASCON J-M. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 334(6058): 928-35. |
2 | YANG Z, ZHANG J, KINTNER-MEYER M C, et al. Electrochemical energy storage for green grid [J]. Chemical reviews, 2011, 111(5): 3577-613. |
3 | ARMAND M, TARASCON J-M. Building better batteries [J]. nature, 2008, 451(7179): 652-7. |
4 | GOODENOUGH J B, PARK K-S. The Li-ion rechargeable battery: a perspective [J]. Journal of the American Chemical Society, 2013, 135(4): 1167-76. |
5 | WHITTINGHAM M S. Lithium batteries and cathode materials [J]. Chemical reviews, 2004, 104(10): 4271-302. |
6 | HU Y-S, LI Y. Unlocking sustainable Na-ion batteries into industry [Z]. ACS Publications. 2021: 4115-7 |
7 | XIE F, LU Y-X, CHEN L-Q, et al. Recent Progress in Presodiation Technique for High-Performance Na-Ion Batteries [J]. Chinese Physics Letters, 2021, 38(11): 136-43. |
8 | LIU X, TAN Y, LIU T, et al. A simple electrode‐level chemical presodiation route by solution spraying to improve the energy density of sodium‐ion batteries [J]. Advanced Functional Materials, 2019, 29(50): 1903795. |
9 | LIU M, ZHANG J, GUO S, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries [J]. ACS applied materials & interfaces, 2020, 12(15): 17620-7. |
10 | WANG H, XIAO Y, SUN C, et al. A type of sodium-ion full-cell with a layered NaNi 0.5 Ti 0.5 O 2 cathode and a pre-sodiated hard carbon anode [J]. RSC Advances, 2015, 5(129): 106519-22. |
11 | PI Y, GAN Z, YAN M, et al. Insight into pre-sodiation in Na3V2 (PO4) 2F3/C@ hard carbon full cells for promoting the development of sodium-ion battery [J]. Chemical Engineering Journal, 2021, 413: 127565. |
12 | MOEEZ I, JUNG H-G, LIM H-D, et al. Presodiation strategies and their effect on electrode–electrolyte interphases for high-performance electrodes for sodium-ion batteries [J]. ACS applied materials & interfaces, 2019, 11(44): 41394-401. |
13 | ZHANG B, DUGAS R, ROUSSE G, et al. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries [J]. Nature communications, 2016, 7(1): 10308. |
14 | DE ILARDUYA J M, OTAEGUI L, DEL AMO J M L, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0. 67 [Fe0. 5Mn0. 5] O2 cathode for sodium-ion battery [J]. Journal of Power Sources, 2017, 337: 197-203. |
15 | ZHANG Q, GAO X-W, SHI Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan [J]. Energy Storage Materials, 2021, 39: 54-9. |
16 | SATHIYA M, THOMAS J, BATUK D, et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-Na x MO2 electrodes [J]. Chemistry of Materials, 2017, 29(14): 5948-56. |
17 | SHEN B, ZHAN R, DAI C, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells [J]. Journal of colloid and interface science, 2019, 553: 524-9. |
18 | PARK K, YU B-C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery [J]. Chemistry of Materials, 2015, 27(19): 6682-8. |
19 | SHANMUKARAJ D, KRETSCHMER K, SAHU T, et al. Highly efficient, cost effective, and safe sodiation agent for high‐performance sodium‐ion batteries [J]. ChemSusChem, 2018, 11(18): 3286-91. |
20 | PAN X, CHOJNACKA A, BéGUIN F. Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems [J]. Energy Storage Materials, 2021, 40: 22-30. |
21 | NIU Y B, GUO Y J, YIN Y X, et al. High‐efficiency cathode sodium compensation for sodium‐ion batteries [J]. Advanced Materials, 2020, 32(33): 2001419. |
22 | YANG Y, WANG Z, DU C, et al. Decoupling the air sensitivity of Na-layered oxides [J]. Science, 2024, 385(6710): 744-52. |
23 | 聂阳. 一种负极补钠添加剂、负极材料及钠离子电池, CN110707308B [P/OL]. |
NIE Y. A sodium-supplementing additive for negative electrodes, a negative electrode material and a sodium-ion battery, CN110707308B [P/OL]. | |
24 | 徐凯琪, 门双, 钟国彬, 等. 一种钠离子电池负极补钠添加剂、钠离子电池负极极片和钠离子电池, CN110690437B [P/OL]. |
XU K Q, MEN S, ZHONG G B, et al. A Sodium-supplementing Additive for the Negative Electrode of Sodium-ion Batteries, a Negative Electrode Plate of Sodium-ion Batteries and Sodium-ion Batteries, CN110690437B [P/OL]. | |
25 | 乔齐齐, 王鹏飞, 施泽涛, 等. 一种补锂或补钠的添加剂及其制备方法和应用, CN116454281A [P/OL]. |
QIAO Q Q, WANG P F, SHI Z T, et al. An additive for lithium or sodium supplementation, its preparation method and application, CN116454281A [P/OL]. | |
26 | 张帅帅, 谢芳, 王卫江, 等. 一种补锂或补钠材料的制备方法及其所得产品和应用, CN116344819A [P/OL]. |
ZHANG S S, XIE F, WANG W J, et al. A preparation method for a lithium or sodium supplementing material, the resulting product thereof and its application, CN116344819A [P/OL]. | |
27 | 杨雪, 谢芳, 张帅帅. 正极补钠添加剂及其制备方法和应用, CN116111072A [P/OL]. |
YANG X, XIE F, ZHANG S S. A sodium-supplementing additive for the positive electrode, its preparation method and application, CN116111072A [P/OL]. | |
28 | 李魁, 曾伟雄, 李尚. 一种纳米草酸钠复合的正极活性材料及其应用, CN115954445B [P/OL]. |
LI K, ZENG W X, LI S. A nano-sodium oxalate-composited positive electrode active material and its application, CN115954445B [P/OL]. | |
29 | ZHANG T, KONG J, SHEN C, et al. Converting Residual Alkali into Sodium Compensation Additive for High-Energy Na-Ion Batteries [J]. ACS Energy Letters, 2023, 8(11): 4753-61. |
30 | 王海燕, 张睿, 唐有根, 等. 一种钠离子电池正极补钠添加剂、补钠方法、正极、柔性电极, CN114566650B [P/OL]. |
WANG H Y, ZHANG R, TANG Y G, et al. A sodium-supplementing additive for the positive electrode of sodium-ion batteries, a sodium-supplementing method, a positive electrode and a flexible electrode, CN114566650B [P/OL]. | |
31 | 董少海, 肖厚文, 米源, 等. 一种提升钠离子电池首次库伦效率和能量密度的方法、正极浆料、正极片和钠离子电池, CN116646460A [P/OL]. |
DONG S H, XIAO H W, MI Y, et al. A method for improving the initial Coulombic efficiency and energy density of sodium-ion batteries, a positive electrode slurry, a positive electrode sheet and sodium-ion batteries, CN116646460A [P/OL]. | |
32 | 周勇, 尚佩, 吴志荣, 等. 一种钠离子电池正极片及其制备方法及钠离子电池, CN116190570A [P/OL]. |
ZHOU Y, SHANG P, WU Z R, et al. A positive electrode sheet for sodium-ion batteries, its preparation method and sodium-ion batteries, CN116190570A [P/OL]. | |
33 | 请求不公布姓名, 刘静, 请求不公布姓名, 等. 一种钠离子电池正极浆料、正极极片、电池、制备方法, CN115663179A [P/OL]. |
Request for anonymity, LIU J, Request for anonymity, et al. A positive electrode slurry for sodium-ion batteries, a positive electrode plate, a battery and a preparation method thereof, CN115663179A [P/OL]. | |
34 | 张国栋, 王巍, 文佳琪. 复合补钠材料及制备方法、正极极片、钠电池、用电设备, CN116826060B [P/OL]. |
ZHANG G D, WANG W, WEN J Q. Composite sodium-supplementing materials and their preparation method, positive electrode plates, sodium batteries and electrical equipment, CN116826060B [P/OL]. | |
35 | CHEN Y, ZHU Y, SUN Z, et al. Achieving High‐Capacity Cathode Presodiation Agent Via Triggering Anionic Oxidation Activity in Sodium Oxide [J]. Advanced Materials, 2024, 36(36): 2407720. |
36 | 杨行, 张庆, 戚兴国, 等. 一种预钠化正极极片及其应用以及一种钠离子电池及其制备方法, CN114649504A [P/OL]. |
YANG X, ZHANG Q, QI X G, et al. A pre-sodiated positive electrode plate and its application as well as a sodium-ion battery and its preparation method, CN114649504A [P/OL]. | |
37 | 李静如, 赵子萌, 王世冠, 等. 补钠材料及其制备方法、正极极片、电极组件、电池和用电装置, CN116789191B [P/OL]. |
LI J R, ZHAO Z M, WANG S G, et al. Sodium-supplementing materials, their preparation methods, positive electrode plates, electrode assemblies, batteries and electrical devices, CN116789191B [P/OL]. | |
38 | 文佳琪, 黄汉川, 王巍. 补钠组合物、正极极片及其制备方法、钠离子电池, CN116706075B [P/OL]. |
WEN J Q, HUANG H C, WANG W. Sodium-supplementing compositions, positive electrode plates and their preparation methods, sodium-ion batteries, CN116706075B [P/OL]. | |
39 | CAO M, XU L, GUO Y, et al. Air‐Stable Na3. 5C6O6 as a Sodium Compensation Additive in Cathode of Na‐Ion Batteries [J]. Small, 2024, 20(42): 2400498. |
40 | LIU X, TAN Y, WANG W, et al. Ultrafine sodium sulfide clusters confined in carbon nano-polyhedrons as high-efficiency presodiation reagents for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27057-65. |
41 | GUO Y-J, NIU Y-B, WEI Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery [J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2772-8. |
42 | 聂阳, 孔权, 徐雄文. 一种补钠组合物及钠离子电池, CN115117558A [P/OL]. |
NIE Y, KONG Q, XU X W. A sodium-supplementing composition and sodium-ion batteries, CN115117558A [P/OL]. | |
43 | ZHANG Y-Y, ZHANG C-H, GUO Y-J, et al. Refined Electrolyte and Interfacial Chemistry toward Realization of High-Energy Anode-Free Rechargeable Sodium Batteries [J]. Journal of the American Chemical Society, 2023, 145(47): 25643-52. |
44 | 江卫军, 周世波, 郝雷明, 等. 一种钠离子电池及其制备方法, CN114583174B [P/OL]. |
JIANG W J, ZHOU S B, HAO L M, et al. A sodium-ion battery and its preparation method, CN114583174B [P/OL]. |
[1] | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05 @CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. |
[2] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[3] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[4] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[5] | 谭仕荣, 尹文骥, 曾翠鸿, 黎小琼, 訚硕, 纪方力, 胡思江, 王红强, 李庆余. 高温淬火对钠离子电池锰基层状正极材料结构和性能的影响[J]. 储能科学与技术, 2024, 13(7): 2399-2406. |
[6] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[7] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[8] | 王立锋, 任乃青, 杨海, 姚雨, 余彦. 低温钠离子电池电解液研究进展[J]. 储能科学与技术, 2024, 13(7): 2206-2223. |
[9] | 李丹, 马铁, 刘汉浩, 郭丽. 高倍率钠离子电池炭包覆纳米铋负极材料[J]. 储能科学与技术, 2024, 13(6): 1775-1785. |
[10] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[11] | 所聪, 王阳峰, 朱紫宸, 杨雁. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
[12] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[13] | 赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. |
[14] | 江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840. |
[15] | 李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||