1 |
Wu, C.; Zhu, C.; Ge, Y.; Zhao, Y.A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries. Journal of Nanomaterials. 2015, 2015:1-9.
|
2 |
Hannana,M.A.; Lipu,M.S.H.; Hussain,A.A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renewable and Sustainable Energy Reviews.2017, 78: 834-854
|
3 |
Jiao,Meng; Wang,Dongqing; Qiu,Jianlong.A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources. 2020, 459
|
4 |
Shunli Wang, Paul Takyi-Aninakwa, Siyu Jin, Chunmei Yu, Carlos Fernandez, Daniel-Ioan Stroe.An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. Energy. 2022, 254(A).
|
5 |
Xiaoyu Li, Zhenpo Wang, Jinying Yan, Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression, Journal of Power Sources,2019, 421: 56-67
|
6 |
Jiao,Meng; Wang,Dongqing; Qiu,Jianlong.A. GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources. 2020, 459
|
7 |
朱元富, 贺文武, 李建兴, 李有财, 李培强. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3):1163-1176.
|
|
ZHU Yuanfu, HE Wenwu, LI Jianxing, LI Youcai, LI Peiqiang. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU. Energy Storage Science and Technology. 2021, 10(3): 1163-1176.
|
8 |
Wu, Longxing.; Pang, Hui.; Jin, Jiamin.; Geng, Yuanfei.; Liu, Kai. A Review of SOC Estimation Methods for Lithium-Ion Batteries Based on Electrochemical Model. Transactions of China Electrotechnical Society. 2022, 37(7): 1703-1725.
|
9 |
Jokar A, Rajabloo B, Desilets M, et al. Review of simplified Pseudo-two-dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 44-55.
|
10 |
Jinpeng, Tian.; Rui, Xiong.; Weixiang, Shen.; Ju, Wang. A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries. Chinese Journal of Mechanical Engineering. 2020, 33, 98-112.
|
11 |
李路路, 陶正顺, 潘庭龙, 杨玮林, 胡官洋. 锂电池分数阶建模及SoC估计策略研究[J]. 储能科学与技术, 2022.
|
|
LI Lulu, TAO Zhengshun, PAN Tinglong,YANG Weilin,HU Guanyang. Research on fractional modeling and SoC estimation strategy of Lithium battery. Energy Storage Science and Technology, 2022.
|
12 |
Yatsui MW, Bai H. Kalman filter based state-of-charge estimation for lithium-ion batteries in hybrid electric vehicles using pulse charging. Veh Power Propuls Conf (VPPC), 2011 IEEE 2011: 1-5
|
13 |
袁照凯, 范秋华, 王冬青, 孙天民. 基于 MIAEKF 的多温度下锂电池 SOC 估计[J]. 储能科学与技术. 2023.
|
|
Yuan Zhaokai, Fan Qiuhua, Wang Dongqing,Sun Tianmin. State of Charge Estimation of Lithium Batteries under Multiple Temperatures based on the MIAEKF Algorithm. Energy Storage Science and Technology, 2023.
|
14 |
巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175.
|
|
Wu Chunling,Hu Wenbo,Meng Jinhao,Liu Zhixuan,Cheng Yanqing. State of Charge Estimation of Lithium-Ion Batteries Based on Maximum Correlation-Entropy Criterion Extended Kalman Filtering Algorithm. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175.
|
15 |
CHENG Z, LYU J, LIU Y, et al. Estimation of State of Charge for Lithium-Ion Battery Based on Finite Difference Extended Kalman Filter[J]. Journal of Applied Mathematics, 2014, 2014(S107): 1-10.
|
16 |
SUN D M, YU X L, Wang C M, et al. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator[J]. Energy, 2021, 214.
|
17 |
Adaikkappan M, Sathiyamoorthy N. A real time state of charge estimation using Harris Hawks optimization-based filtering approach for electric vehicle power batteries[J]. International Journal of Energy Research, 2022, 46(7):9 293-9309.
|
18 |
Maheshwari A, Nageswari S.Real-time state of charge estimation for electric vehicle power batteries using optimized filter[J]. Energy, 2022, 254(B).
|
19 |
N, Farshi, S, Daniel-Ioan.An Enhanced Equivalent Circuit Model With Real-Time Parameter Identification for Battery State-of-Charge Estimation. IEEE Transactions on Industrial Electronics,2022, 69(4): 3743-3751.
|
20 |
El Din, M., Hussein, A. A., Abdel-Hafez, M. F. Improved Battery SOC Estimation Accuracy Using a Modified UKF With an Adaptive Cell Model Under Real EV Operating Conditions. IEEE Transactions on Transportation Electrification, 2018, 4(2),: 408-417.
|
21 |
Liu Fang, Shao Chen, Su Weixing, et al. Research Papers Online joint estimator of key states for battery based on a new equivalent circuit model[J]. Journal of Energy Storage, 2022, 52.
|
22 |
Wang Kai, Feng Xiao, Pang Jinbo.State of Charge (SOC) Estimation of Lithium-ion Battery Based on Adaptive Square Root Unscented Kalman Filter. International Journal of Electrochemical Science, 2020, 15(9): 9499-9516.
|
23 |
PENG N, ZHANG S Z, GUO X, et al. Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter[J]. International Journal of Energy Research, 2021, 45(1): 975-990
|
24 |
P Fornaro, P Puleston, P. Battaiotto, On-line parameter estimation of a Lithium-Ion battery/supercapacitor storage system using filtering sliding mode differentiators[J]. Journal of Energy Storage, 2020, 32.
|
25 |
Pillai, SU(Pillai, SU); Suel, T(Suel, T); Cha,SH(Cha, SH). The perron-frobenius theorem-Some of its applications.IEEE SIGNAL PROCESSING MAGAZINE, 2005, 22(2): 62-75.
|