1 |
LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2016, 2: 76-106.
|
2 |
KALHOFF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175.
|
3 |
HOU J X, WANG L, FENG X N, et al. Thermal runaway of lithium-ion batteries employing flame-retardant fluorinated electrolytes[J]. Energy & Environmental Materials, 2023, 6(1): doi:10.1002/eem2.12297.
|
4 |
TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940.
|
5 |
FENG F, YANG R, MENG J H, et al. Electrochemical impedance characteristics at various conditions for commercial solid-liquid electrolyte lithium-ion batteries: Part. 2. Modeling and prediction[J]. Energy, 2022, 243: 123091.
|
6 |
BUSCHE M R, DROSSEL T, LEICHTWEISS T, et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts[J]. Nature Chemistry, 2016, 8(5): 426-434.
|
7 |
李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614.
|
|
LI H, XU X X. R & D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614.
|
8 |
LU X J, HAI J K, ZHANG F, et al. Preparation and infiltration of NASICON-type solid electrolytes with microporous channels[J]. Ceramics International, 2022, 48(2): 2203-2211.
|
9 |
YANG L, HUANG Y X, TUFAIL M K, et al. An unprecedented fireproof, anion-immobilized composite electrolyte obtained via solidifying carbonate electrolyte for safe and high-power solid-state lithium-ion batteries[J]. Small, 2022, 18(32): doi: 10.1002/smll.202202060.
|
10 |
BÖRNER M, FRIESEN A, GRÜTZKE M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392.
|
11 |
Y.W. Wang C M S. Rechargeable Batteries [J]. Springer, 2015: 419-454.
|
12 |
张青松, 赵子恒, 白伟. 过充条件下三元锂离子电池热安全性分析[J]. 消防科学与技术, 2020, 39(5): 713-717.
|
|
ZHANG Q S, ZHAO Z H, BAI W. Thermal safety analysis on ternary lithium ion battery under overcharge conditions[J]. Fire Science and Technology, 2020, 39(5): 713-717.
|
13 |
毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 1120-1127.
|
|
MAO Y, BAI Q Y, MA S D, et al. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 1120-1127.
|
14 |
ZOU K Y, LU S X, CHEN X, et al. Thermal and gas characteristics of large-format LiNi0.8Co0.1Mn0.1O2 pouch power cell during thermal runaway[J]. Journal of Energy Storage, 2021, 39: 102609.
|
15 |
FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301.
|
16 |
WU J P, WENG S T, ZHANG X A, et al. In situ detecting thermal stability of solid electrolyte interphase (SEI)[J]. Small, 2023, 19(25): doi: 10.1002/smll.202208239.
|
17 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
|
18 |
徐振恒, 周晓燕, 付佳龙, 等. 锂离子电池热失控及其预警方法[J]. 科学通报, 2023, 68(33): 4501-4516.
|
|
XU Z H, ZHOU X Y, FU J L, et al. Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries[J]. Chinese Science Bulletin, 2023, 68(33): 4501-4516.
|
19 |
QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: 118767.
|