储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1861-1870.doi: 10.19799/j.cnki.2095-4239.2024.0007
张玉超1(), 张凤姣1, 娄伟1,2, 昝飞翔1, 王琳玲1, 盛安旭1, 吴晓辉1, 陈静1()
收稿日期:
2024-01-03
修回日期:
2024-01-25
出版日期:
2024-06-28
发布日期:
2024-06-26
通讯作者:
陈静
E-mail:zhangyuchao@hust.edu.cn;chenjing@hust.edu.cn
作者简介:
张玉超(2000—),男,硕士研究生,研究方向为废旧锂离子电池回收,E-mail:zhangyuchao@hust.edu.cn;
Yuchao ZHANG1(), Fengjiao ZHANG1, Wei LOU1,2, Feixiang ZAN1, Linling WANG1, Anxu SHENG1, Xiaohui WU1, Jing CHEN1()
Received:
2024-01-03
Revised:
2024-01-25
Online:
2024-06-28
Published:
2024-06-26
Contact:
Jing CHEN
E-mail:zhangyuchao@hust.edu.cn;chenjing@hust.edu.cn
摘要:
随着新能源电动汽车市场的高速发展,产生了大量亟待处置的废旧锂离子电池。废旧锂离子电池正极材料中的有价金属含量丰富,具有巨大的回收价值,但回收过程中也会产生潜在的二次污染,对生态环境和作业工人产生危害。本文根据废旧锂离子电池的组成和结构,深入分析了正极材料有价金属在预处理、回收和再生三个环节中的转化历程和机制,讨论了杂质元素的干扰和响应对策。重点分析了预处理过程中电解质、有机黏结剂以及集流体铝箔对正极材料分离的影响,探讨了正极材料有价金属在回收和再生过程中的反应机制,包括传统的火法、湿法回收和新兴的再生工艺,从回收效率、能/物耗、环境影响等多个角度总结了工艺的特点。最后,对废旧锂离子电池正极材料资源化利用的发展方向和前景进行了展望。本文旨在为正极材料有价金属的高效资源化利用方法提供研究思路和选择依据。
中图分类号:
张玉超, 张凤姣, 娄伟, 昝飞翔, 王琳玲, 盛安旭, 吴晓辉, 陈静. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024, 13(6): 1861-1870.
Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact[J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870.
25 | LI C Y, DAI G F, LIU R Y, et al. Separation and recovery of nickel cobalt manganese lithium from waste ternary lithium-ion batteries[J]. Separation and Purification Technology, 2023, 306: 122559. |
26 | 吴越, 裴锋, 贾蕗路, 等. 从废旧磷酸铁锂电池中回收铝、铁和锂[J]. 电源技术, 2014, 38(4): 629-631. |
WU Y, PEI F, JIA L L, et al. Recovery of aluminum, iron and lithium from spent lithium iron phosphate batteries[J]. Chinese Journal of Power Sources, 2014, 38(4): 629-631. | |
27 | ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
28 | JUNG J C Y, SUI P C, ZHANG J J. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments[J]. Journal of Energy Storage, 2021, 35: 102217. |
29 | ZHANG Y C, WANG W Q, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102: 847-855. |
30 | LIANG Z L, CAI C, PENG G W, et al. Hydrometallurgical recovery of spent lithium ion batteries: Environmental strategies and sustainability evaluation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5750-5767. |
31 | MISHRA G, JHA R, MESHRAM A, et al. A review on recycling of lithium-ion batteries to recover critical metals[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108534. |
32 | GEROLD E, SCHINNERL C, ANTREKOWITSCH H. Critical evaluation of the potential of organic acids for the environmentally friendly recycling of spent lithium-ion batteries[J]. Recycling, 2022, 7(1): 4. |
33 | LI L, BIAN Y F, ZHANG X X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371. |
34 | LI L, GE J, CHEN R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621. |
35 | LI L, FAN E S, GUAN Y B, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
36 | CHEN D D, RAO S, WANG D X, et al. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid- l-ascorbic acid system[J]. Chemical Engineering Journal, 2020, 388: 124321. |
37 | JIN S, MU D Y, LU Z A, et al. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances[J]. Journal of Cleaner Production, 2022, 340: 130535. |
38 | MA Y Y, TANG J J, WANALDI R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching[J]. Journal of Hazardous Materials, 2021, 402: 123491. |
39 | QI Y P, MENG F S, YI X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries[J]. Journal of Cleaner Production, 2020, 251: 119665. |
40 | ZHENG X H, GAO W F, ZHANG X H, et al. Spent lithium-ion battery recycling-Reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. |
41 | YANG L M, GAO Z, LIU T, et al. Direct electrochemical leaching method for high-purity lithium recovery from spent lithium batteries[J]. Environmental Science & Technology, 2023, 57(11): 4591-4597. |
42 | LI H F, BERBILLE A, ZHAO X, et al. A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries[J]. Nature Energy, 2023, 8: 1137-1144. |
43 | MAO J F, YE C, ZHANG S L, et al. Toward practical lithium-ion battery recycling: Adding value, tackling circularity and recycling-oriented design[J]. Energy & Environmental Science, 2022, 15(7): 2732-2752. |
44 | WANG X T, GU Z Y, ANG E H, et al. Prospects for managing end-of-life lithium-ion batteries: Present and future[J]. Interdisciplinary Materials, 2022, 1(3): 417-433. |
45 | DUTTA D, KUMARI A, PANDA R, et al. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries[J]. Separation and Purification Technology, 2018, 200: 327-334. |
46 | 郭浩. 废旧三元锂离子电池正极材料中有价金属的回收研究[D]. 镇江: 江苏大学, 2022. |
GUO H. Research on the recycling of valuable metals in cathode materials from spent ternary lithium-ion batteries[D]. Zhenjiang: Jiangsu University, 2022. | |
47 | 杨健, 秦吉涛, 李芳成, 等. 废旧锂离子电池的湿法回收研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3261-3278. |
YANG J, QIN J T, LI F C, et al. Review of hydrometallurgical processes for recycling spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3261-3278. | |
48 | 杨玮娇, 马保中, 杨卜, 等. 硝酸浸出液中的铝高效脱除[J]. 有色金属工程, 2018, 8(4): 57-61. |
YANG W J, MA B Z, YANG B, et al. High-efficiency removal of aluminum from nitric acid leaching liquor[J]. Nonferrous Metals Engineering, 2018, 8(4): 57-61. | |
49 | 彭刚伟. 机械化学法强化废旧锂离子电池有价金属柔性浸出研究 [D]. 武汉: 华中科技大学, 2020. |
PENG G W. Study on mechanochemically enhanced mild leaching of valuable metals from spent lithium ion batteries [D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
50 | 蔡晨. 废旧锂离子电池水热强化乙酸浸出与资源化回收研究[D]. 武汉: 华中科技大学, 2020. |
CAI C. Study on Hydrothermal enhanced leaching with acetic acid for recovery of spent lithium ion batteries[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
51 | LIU T C, CHEN J, LI H L, et al. An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Separation and Purification Technology, 2020, 245: 116869. |
52 | LEI S Y, SUN W, YANG Y. Solvent extraction for recycling of spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2022, 424: 127654. |
53 | HUANG Y F, HAN G H, LIU J T, et al. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process[J]. Journal of Power Sources, 2016, 325: 555-564. |
54 | WEI Q, WU Y Y, LI S J, et al. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review[J]. The Science of the Total Environment, 2023, 866: 161380. |
1 | XU X Q, MU W N, XIAO T F, et al. A clean and efficient process for simultaneous extraction of Li, Co, Ni and Mn from spent lithium-ion batteries by low-temperature NH4Cl roasting and water leaching[J]. Waste Management, 2022, 153: 61-71. |
2 | LU Y Q, PENG K Y, ZHANG L G. Sustainable recycling of electrode materials in spent Li-ion batteries through direct regeneration processes[J]. ACS ES&T Engineering, 2022, 2(4): 586-605. |
3 | CRABTREE G. The coming electric vehicle transformation[J]. Science, 2019, 366(6464): 422-424. |
4 | CHEN M, MA X, CHEN B, et al. Recycling end-of-life electric vehicle lithium-ion batteries [J]. Joule, 2019, 3(11): 2622-2646. |
5 | RICHA K, BABBITT C W, GAUSTAD G, et al. A future perspective on lithium-ion battery waste flows from electric vehicles[J]. Resources, Conservation and Recycling, 2014, 83: 63-76. |
6 | 张英杰, 宁培超, 杨轩, 等. 废旧三元锂离子电池回收技术研究新进展[J]. 化工进展, 2020, 39(7): 2828-2840. |
ZHANG Y J, NING P C, YANG X, et al. Research progress on the recycling technology of spent ternary lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2828-2840. | |
7 | LI J, WANG G X, XU Z M. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. |
8 | DU K D, ANG E H, WU X L, et al. Progresses in sustainable recycling technology of spent lithium-ion batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1012-1036. |
9 | LI J J, LI L L, YANG R R, et al. Assessment of the lifecycle carbon emission and energy consumption of lithium-ion power batteries recycling: A systematic review and meta-analysis[J]. Journal of Energy Storage, 2023, 65: 107306. |
10 | ZHONG X H, LIU W, HAN J W, et al. Pretreatment for the recovery of spent lithium ion batteries: Theoretical and practical aspects[J]. Journal of Cleaner Production, 2020, 263: 121439. |
11 | WANG Y Q, AN N, WEN L, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 391-419. |
55 | XU R, XU W, WANG J G, et al. A review on regenerating materials from spent lithium-ion batteries[J]. Molecules, 2022, 27(7): 2285. |
56 | ZHAO Y L, YUAN X Z, JIANG L B, et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 383: 123089. |
57 | ZHANG S, DENG C, YANG S Y, et al. An improved carbonate co-precipitation method for the preparation of spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material[J]. Journal of Alloys and Compounds, 2009, 484(1/2): 519-523. |
58 | SA Q N, GRATZ E, HE M N, et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream[J]. Journal of Power Sources, 2015, 282: 140-145. |
59 | PARK S H, KANG S H, BELHAROUAK I, et al. Physical and electrochemical properties of spherical Li1+ x(Ni1/3Co1/3Mn1/3)1– xO2 cathode materials[J]. Journal of Power Sources, 2008, 177(1): 177-183. |
60 | YAN S T, WANG R Z, SHAO C Y, et al. The strategy of entire recovery: From spent cathode material with high nickel content to new LiNi0.5Co0.2Mn0.3O2 and Li2CO3 powders[J]. Journal of Power Sources, 2019, 440: 227140. |
61 | ZHANG Z H, YU M, YANG B, et al. Regeneration of Al-doped LiNi1/3Co1/3Mn1/3O2 cathode material via a sustainable method from spent Li-ion batteries[J]. Materials Research Bulletin, 2020, 126: 110855. |
62 | LEE C K, RHEE K I. Preparation of LiCoO2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 17-21. |
63 | REN J, LI R H, LIU Y L, et al. The impact of aluminum impurity on the regenerated lithium nickel cobalt manganese oxide cathode materials from spent LIBs[J]. New Journal of Chemistry, 2017, 41(19): 10959-10965. |
64 | SA Q N, HEELAN J A, LU Y, et al. Copper impurity effects on LiNi1/3Mn1/3Co1/3O2 cathode material[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20585-20590. |
65 | MAKUZA B, TIAN Q H, GUO X Y, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. |
66 | ZHOU M X, LI B Y, LI J, et al. Pyrometallurgical technology in the recycling of a spent lithium ion battery: Evolution and the challenge[J]. ACS ES&T Engineering, 2021, 1(10): 1369-1382. |
12 | YAO L P, ZENG Q, QI T, et al. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries[J]. Journal of Cleaner Production, 2020, 245: 118820. |
13 | WU L, ZHANG F S, HE K, et al. Avoiding thermal runaway during spent lithium-ion battery recycling: A comprehensive assessment and a new approach for battery discharge [J]. Journal of Cleaner Production, 2022, 380: 135045. |
14 | 靳岩, 娄忠良. 一种废旧锂电池快速放电方法及放电处理设备: CN108808143B[P]. 2020-04-17. |
JIN Y, LOU Z. Rapid discharge method for waste lithium battery and discharge treatment equipment: CN108808143B[P]. 2020-04-17. | |
15 | XIAO J, GUO J, ZHAN L, et al. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions [J]. Journal of Cleaner Production, 2020, 255: 120064. |
16 | 蒋良兴, 郑文军, 张刚, 等. 废旧锂离子电池预处理的绿色放电技术研究[J]. 中南大学学报(自然科学版), 2023, 54(2): 684-693. |
JIANG L X, ZHENG W J, ZHANG G, et al. Research on pretreatment green discharge technology of spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2023, 54(2): 684-693. | |
17 | FANG Z, DUAN Q L, PENG Q K, et al. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling[J]. Journal of Cleaner Production, 2022, 359: 132116. |
18 | ZHANG G W, HE Y Q, FENG Y, et al. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis[J]. Journal of Cleaner Production, 2018, 199: 62-68. |
19 | ZHENG X H, ZHU Z W, LIN X, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4(3): 138-158. |
20 | YU D W, HUANG Z, MAKUZA B, et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review[J]. Minerals Engineering, 2021, 173: 107218. |
21 | WANG M M, TAN Q Y, LIU L L, et al. A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12799-12806. |
22 | LI L, DUNN J B, ZHANG X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment[J]. Journal of Power Sources, 2013, 233: 180-189. |
23 | KIM S, BANG J, YOO J, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. Journal of Cleaner Production, 2021, 294: 126329. |
24 | WERNER D M, MÜTZE T, PEUKER U A. Influence of pretreatment strategy on the crushing of spent lithium-ion batteries[J]. Metals, 2022, 12(11): 1839. |
67 | MAO J K, LI J, XU Z M. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries[J]. Journal of Cleaner Production, 2018, 205: 923-929. |
68 | LIU P C, XIAO L, TANG Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1323-1332. |
69 | FAN M, CHANG X, MENG Q H, et al. Progress in the sustainable recycling of spent lithium-ion batteries[J]. SusMat, 2021, 1(2): 241-254. |
70 | 孙建勇. 采用硫酸化焙烧-水浸出工艺从LiNi1/3Co1/3Mn1/3O2中回收金属的研究[D]. 兰州: 兰州理工大学, 2018. |
SUN J Y. Study on metal recovery from LiNi1/3Co1/3Mn1/3O2 by sulfation roasting-water leaching process[D]. Lanzhou: Lanzhou University of Technology, 2018. | |
71 | FAN E S, LI L, LIN J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16144-16150. |
72 | WANG W Q, ZHANG Y C, LIU X G, et al. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019: acssuschemeng.9b01564. |
73 | XIAO S W, REN G X, XIE M Q, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system[J]. Journal of Sustainable Metallurgy, 2017, 3(4): 703-710. |
74 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575: 75-86. |
75 | LI N, GUO J H, CHANG Z D, et al. Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting[J]. RSC Advances, 2019, 9(41): 23908-23915. |
76 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
77 | YANG T Z, LUO D, YU A P, et al. Enabling future closed-loop recycling of spent lithium-ion batteries: Direct cathode regeneration[J]. Advanced Materials, 2023, 35(36): e2203218. |
78 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
79 | NIE H H, XU L, SONG D W, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. |
80 | SHI Y, CHEN G, LIU F, et al. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes[J]. ACS Energy Letters, 2018, 3(7): 1683-1692. |
81 | SHI Y, CHEN G, CHEN Z. Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles[J]. Green Chemistry, 2018, 20(4): 851-862. |
82 | ZHAO S Q, ZHANG W X, LI G M, et al. Ultrasonic renovation mechanism of spent LCO batteries: A mild condition for cathode materials recycling[J]. Resources, Conservation and Recycling, 2020, 162: 105019. |
83 | ZHAO Q, HU L, LI W J, et al. Recovery and regeneration of spent lithium-ion batteries from new energy vehicles[J]. Frontiers in Chemistry, 2020, 8: 807. |
84 | LAN Y Q, LI X K, ZHOU G M, et al. Direct regenerating cathode materials from spent lithium-ion batteries[J]. Advanced Science, 2024, 11(1): e2304425. |
85 | WANG J X, JIA K, MA J, et al. Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage[J]. Nature Sustainability, 2023, 6: 797-805. |
86 | WANG T, LUO H M, FAN J T, et al. Flux upcycling of spent NMC111 to nickel-rich NMC cathodes in reciprocal ternary molten salts[J]. iScience, 2022, 25(2): 103801. |
87 | DU M, GUO J Z, ZHENG S H, et al. Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: Extracting Li from brine[J]. Chinese Chemical Letters, 2023, 34(6): 107706. |
[1] | 袁子鸥, 王峰, 祁星朝, 张琦, 马瑞. 应用于储热领域的混合钠基废盐热物性分析[J]. 储能科学与技术, 2023, 12(12): 3616-3626. |
[2] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[3] | 李林林, 王昱杰, 门一飞, 杨伟, 邹汉波, 陈胜洲. 湿法冶金回收技术中无机酸作为浸出剂的研究进展[J]. 储能科学与技术, 2021, 10(1): 68-76. |
[4] | 李林林, 曹林娟, 麦永雄, 门一飞, 杨伟, 陈胜洲. 废旧锂离子电池有机酸湿法冶金回收技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1641-1650. |
[5] | 聂雪娇, 郭晋芝, 王美怡, 谷振一, 赵欣欣, 杨旭, 梁皓杰, 吴兴隆. 以废旧锰酸锂正极为原料制备Li0.25Na0.6MnO2钠离子电池正极材料的研究[J]. 储能科学与技术, 2020, 9(5): 1402-1409. |
[6] | 楼平, 徐国华, 岳灵平, 李首顶, 程琦, 曹元成, 邓鹤鸣. 熔盐法再生修复退役三元动力电池正极材料[J]. 储能科学与技术, 2020, 9(3): 848-855. |
[7] | 陈永珍, 黎华玲, 宋文吉, 涂小琳, 冯自平. 废旧磷酸铁锂电池回收技术研究进展[J]. 储能科学与技术, 2019, 8(2): 237-247. |
[8] | 卫寿平,孙 杰,周 添,李吉刚,曹焕露. 废旧锂离子电池中金属材料回收技术研究进展[J]. 储能科学与技术, 2017, 6(6): 1196-. |
[9] | 张三佩,温兆银. 钠-空气电池研究评述[J]. 储能科学与技术, 2016, 5(3): 249-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||