储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1849-1860.doi: 10.19799/j.cnki.2095-4239.2023.0929
徐冉1(), 王宝冬2, 王绍亮1, 张琦1, 张磊1, 冯子洋1
收稿日期:
2023-12-22
修回日期:
2023-12-27
出版日期:
2024-06-28
发布日期:
2024-06-26
通讯作者:
徐冉
E-mail:20063985@chnenergy.com.cn
作者简介:
徐冉(1996—),女,硕士,助理级工程师,主要研究方向为液流电池储能技术,E-mail:20063985@chnenergy.com.cn。
基金资助:
Ran XU1(), Baodong WANG2, Shaoliang WANG1, Qi ZHANG1, Lei ZHANG1, Ziyang FENG1
Received:
2023-12-22
Revised:
2023-12-27
Online:
2024-06-28
Published:
2024-06-26
Contact:
Ran XU
E-mail:20063985@chnenergy.com.cn
摘要:
液流电池因其本质安全、超长寿命等特性,是大规模储能的关键技术之一。电极材料作为全钒液流电池的核心部件,其与电解液的界面特性会对液流电池的性能产生重要影响。通过电极表面改性处理方法能够实现其在高电流密度下的电化学活性提升,而电极表面杂原子掺杂技术是目前的研究热点。本文归纳了以石墨毡为基体的杂原子掺杂机理及其研究进展,着重介绍了碳骨架的原位掺杂和电极表面的杂原子催化剂两种掺杂策略,并总结了两种掺杂策略的掺杂类型和性能差异。其中,依据杂原子的电负性和原子尺寸,阐述了电极材料原位掺杂的机理,讨论了杂原子对碳纤维电子结构的影响方式;根据碳基材料催化剂的种类,介绍了多孔炭材料、碳纳米管和石墨烯三种碳基催化剂的杂原子掺杂对电极材料电化学性能的影响规律。综合分析表明,通过电极表面的原子掺杂不仅可以增加电极反应的活性位点,促进活性离子的迁移,还可以改善其亲水性,增大电极与电解液接触的有效面积。基于此,提出了采用调控电极表面电荷分布、官能团种类、构建缺陷位点等方法有效增强电极材料的稳定性和电化学性能,并有望在实现高电流密度下电化学活性提高的同时获得较高的电导率。
中图分类号:
徐冉, 王宝冬, 王绍亮, 张琦, 张磊, 冯子洋. 杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术, 2024, 13(6): 1849-1860.
Ran XU, Baodong WANG, Shaoliang WANG, Qi ZHANG, Lei ZHANG, Ziyang FENG. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1849-1860.
1 | 贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术,2015, 4(5): 467-475. |
JIA C K, WANG Q.The development of high energy density redox flow batteries[J].Energy Storage Science and Technology, 2015, 4(5): 467-475. | |
2 | XUAN T, WANG L W. Eutectic electrolyte and interface engineering for redox flow batteries[J]. Energy Storage Materials, 2022, 48: 263-282. |
3 | GENCTEN M, SAHIN Y. A critical review on progress of the electrode materials of vanadium redox flow battery[J]. Energy Research, 2020, 44: 7903-7923. |
4 | KUMAR R, SAHOO S, JOANNI E, et al. Heteroatom doped graphene engineering for energy storage and conversion[J]. Materials Today, 2020, 39: 47-65. |
5 | 李强, 王俊楠, 孙红, 等. 钒液流电池石墨毡电极的MWCNTs-COOH-NS修饰[J]. 储能科学与技术, 2021, 10(6): 2097-2105. |
LI Q, WANG J N, SUN H, et al. Graphite felt electrode modified with MWCNTs-COOH-NS for vanadium flow battery[J]. Energy Storage Science and Technology, 2021, 10(6): 2097-2105. | |
6 | 姚祯, 张琦, 王锐, 等. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
YAO Z, ZHANG Q, WANG R, et al. Application of biomass derived carbon materials in all vanadium flow battery electrodes[J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. | |
7 | 曾艳, 吕早生, 刘俞辰, 等. 全钒液流电池中石墨毡电极的改性研究[J]. 电镀与精饰, 2019, 41(1): 15-21. |
ZENG Y, LV Z S, LIU Y C, et al. Recent progress on graphite felt as electrode materials in vanadium redox flow battery[J]. Plating and Finishing, 2019, 41(1): 15-21. | |
8 | SANKARALINGAM R K, SESHADRI S, SUNARSO J, et al. Overview of the factors affecting the performance of vanadium redox flow batteries[J]. Journal of Energy Storage, 2021, 41, 102857. |
9 | 娄景媛, 尤东江, 李雪菁, 等. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学, 2020, 26(6): 876-884. |
LOU J Y, YOU L J, LI X J, et al. Step-by-step modification of graphite felt electrode for vanadium redox flow battery[J]. Journal of electrochemistry, 2020, 26(6): 876-884. | |
10 | QI S T, DAI L, HUO W J, et al. Doping engineering strategies for electrodes and catalysts in vanadium redox flow battery[J]. Composites Part B, 2023, doi: 10.1016/j.compositesb.2023.110947. |
11 | LIU JING, SONG P, NING Z G, et al. Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction[J]. Electrocatalysis, 2015, 6: 132-147. |
12 | ZHANG K Y, YAN C W, TANG A. Interfacial co-polymerization derived nitrogendoped carbon enables high-performance carbon felt for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2021, 9, 17300-17310. |
13 | HE Z X, JIANG Y Q, ZHU J, et al., Phosphorus doped multi-walled carbon nanotubes: An excellent electrocatalyst for the VO2+/VO2 + redox Reaction[J]. ChemElectroChem, 2018, 5(17): 2464-2474. |
14 | CHUNG Y, NOH C, KWON Y. Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery[J]. Journal of Power Sources, 2019, 438, 227063. |
15 | 苏秀丽, 杨霖霖, 周禹, 等, 全钒液流电池电极研究进展[J]. 储能科学与技术, 2019, 8(1): 65-74. |
SU X L, YANG L L, ZHOU Y, et al. Developments of electrodes for vanadium redox flow battery[J]. Energy Storage Science and Technology, 2019, 8(1): 65-74. | |
16 | KIM H, PAICK J, YI J S, et al. Kinetic relevancy of surface defects and heteroatom functionalities of carbon electrodes for the vanadium redox reactions in flow batteries[J]. Journal of Power Sources, 2023, 557: 232612. |
17 | JIN J T, FU X G, LIU Y R, et al. Identifying the active site in nitrogen-doped graphene for the VO2+/VO2 + redox reaction[J]. ACS Nano, 2013, 7(6): 4764-4773 |
18 | WU L T, SHEN Y, YU L H, et al. Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst[J]. Nano Energy, 2016, 28: 19-28. |
19 | LEE H J, KIM H. Graphite felt coated with dopamine-derived nitrogen-doped carbon as a positive electrode for a vanadium redox flow battery[J]. Journal of The Electrochemical Society, 2015, 162(8): A1675-A1681. |
20 | HE Z Q, ZHOU X J, ZHANG Y, et al. Low-temperature nitrogen-doping of graphite felt electrode for vanadium redox flow batteries[J]. Journal of The Electrochemical Society, 2019, 166(12): A2336-A2340. |
21 | KIM K J, LEE H S, KIM J, et al. Superior electrocatalytic activity of a robust carbon-felt electrode with oxygen-rich phosphate groups for all-vanadium redox flow batteries[J]. ChemSusChem, 2016, 9: 1329-1338. |
22 | WANG R, LI Y S, WANG Y N, et al. Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery[J]. Applied Energy, 2020, 261, 114369. |
23 | WU X W, XIE Z Y, ZHOU H K, et al. Designing high efficiency graphite felt electrode via HNO3 vapor activation towards stable vanadium redox flow battery[J]. Electrochimica Acta 2023, 440, 141728. |
24 | HUANG Y Q, DENG Q, WU X W, et al. N, O co-doped carbon felt for high-performance all-vanadium redox flow battery[J]. International Journal of Hydrogen Energy, 2017, 42: 7177-7185. |
25 | KIM S, LIM H, KIM H, et al. Nitrogen and oxygen dual-doping on carbon electrodes by urea thermolysis and its electrocatalytic significance for vanadium redox flow battery[J]. Electrochimica Acta, 2020, 348: 136286. |
26 | PARK S E, LEE K, SUHARTO Y, et al. Enhanced electrocatalytic performance of nitrogen-and phosphorous-functionalized carbon felt electrode for VO2+/VO2 + redox reaction[J]. International Journal of Energy Research, 2021, 45: 1806-1817. |
27 | OPAR D O, NANKYA R, RAJ C J, et al. In-situ functionalization of binder-free three-dimensional boron-doped mesoporous graphene electrocatalyst as a high-performance electrode material for all-vanadium redox flow batteries[J]. Applied Materials Today, 2021, 22: 100950. |
28 | JIANG H R, SHYY W, ZENG L, et al. Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2018, 6: 13244-13253. |
29 | LEE S, CHO S Y, CHUNG Y S, et al., High electrical and thermal conductivities of a PAN-based carbon fiber via boron-assisted catalytic graphitization[J]. Carbon, 2022, 199: 70-79. |
30 | YANG I, LEE S, JANG D, et al. Enhancing energy efficiency and long-term durability of vanadium redox flow battery with catalytically graphitized carbon fiber felts as electrodes by boron doping[J]. Electrochimica Acta, 2022, 429: 141033. |
31 | ZHANG J L, LIU Y Y, LU S F, et al. Nitrogen, phosphorus co-doped graphite felt as highly efficient electrode for VO2+/VO2 + reaction[J]. Batteries, 2023, 9(40): 1-10. |
32 | SHI L, LIU S Q, HE Z, et al. Synthesis of boron and nitrogen co-doped carbon nanofiber as efficient metal-free electrocatalyst for the VO2+/VO2 + redox reaction[J]. Electrochimica Acta, 2015, 178: 748-757. |
33 | ZHANG F J, ZHANG H T,et al. Applications of nanocarbons in redox flow batteries[J]. New Carbon Materials, 2021, 36(1): 82-92. |
34 | HUANG R J, WANG Y, LIU S Q. Non-precious transition metal based electrocatalysts for vanadium redox flow batteries: Rational design and perspectives[J]. Journal of Power Sources, 2021, 515: 230640. |
35 | XU J, ZHANG Y Q, HUANG Z F, et al. Surface modification ocarbon-based electrodes for vanadium redox flow batteries[J].Energy Fuels, 2021, 35: 8617-8633. |
36 | PARK M J, RYU J, CHO J, et al. Nanostructured electrocatalysts for all-vanadium redox flow batteries[J].Chemistry an Asian Journal, 2015, 10: 2096-2110. |
37 | LIU Y C, SHEN Y, YU L H, et al. Holey-engineered electrodes for advanced vanadium flow batteries[J]. Nano Energy, 2018, 43: 55-62. |
38 | LIU Y B, YU L H, LIU X, et al. ZIF-derived holey electrode with enhanced mass transfer and N-rich catalytic sites for high-power and long-life vanadium flow batteries[J]. Journal of Energy Chemistry, 2022, 72: 545-553. |
39 | JI J, NOH C, SHIN M, et al. Vanadium redox flow batteries using new mesoporous nitrogen-doped carbon coated graphite felt electrode[J]. Applied Surface Science, 2023, 611: 155665. |
40 | WANG S Y, ZHAO X S, COCHELL T, et al. Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3: 2164-2167. |
41 | LIU L S, ZHANG X H, ZHANG D H, et al. Regulating the N/B ratio to construct B, N co-doped carbon nanotubes on carbon felt for high-performance vanadium redox flow batteries[J]. Chemical Engineering Journal, 2023, 473: 145454. |
42 | GONZÁLEZ Z, BOTAS C, BLANCO C, et al. Thermally reduced graphite and graphene oxides in VRFBs[J]. Nano energy, 2013, 2(6): 1322-1328. |
43 | LING W, WANG Z A, MA Q, et al. Phosphorus and oxygen co-doped composite electrode with hierarchical electronic and ionic mixed conducting networks for vanadium redox flow batteries[J].Chemical Communications, 2019: 1-4. |
44 | LI Q, WANG J N, ZHANG T Y, et al. Analysis of the performance of phosphorus and sulphur co-doped reduced graphene oxide as catalyst in vanadium redox flow battery[J]. Journal of Electrochemical Society, 2022, 169: 010523. |
45 | LI Q, LIU J Q, BAI A Y, et al. Preparation of a nitrogen-doped reduced graphene oxide-modified graphite felt electrode for VO2+/VO2 + reaction by freeze-drying and pyrolysis method[J]. Journal of Chemistry, 2019: 8958946. |
46 | XU A, SHI L, ZENG L, et al. First-principle investigations of nitrogen, boron, phosphorus-doped graphite electrodes for vanadium redox flow batteries[J]. Electrochimica Acta, 2019, 300: 389-395. |
47 | SHI L, LIU S Q, HE Z, et al. Nitrogen-doped graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery[J]. Electrochimica Acta, 2014, 138: 93-100. |
[1] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[2] | 张忠豪, 邱殿凯, 彭林法, 易培云. 一体式再生燃料电池双功能氧电极高分散工艺研究[J]. 储能科学与技术, 2024, 13(5): 1417-1426. |
[3] | 戴纹硕, 郭骞远, 陈向南, 张华民, 马相坤. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. |
[4] | 张爱芳, 魏邦达, 李卓昊, 杨洋, 杨添强, 姚俊, 张杰, 刘飞, 李浩秒, 王康丽, 蒋凯. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. |
[5] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[6] | 周洋, 韩培玉, 牛迎春, 徐春明, 徐泉. 金属有机框架衍生的C-Bi/CC电极制备及其在铁铬液流电池中的电化学性能[J]. 储能科学与技术, 2024, 13(2): 381-389. |
[7] | 肖也, 徐磊, 闫崇, 黄佳琦. 锂电池用参比电极的设计与应用[J]. 储能科学与技术, 2024, 13(1): 82-91. |
[8] | 刘红, 李俊霞. 高比能二次锂电池电极材料的储能系统配电网运行建模与仿真研究[J]. 储能科学与技术, 2024, 13(1): 342-344. |
[9] | 黄永浩, 臧国景, 朱霨亚, 廖友好, 李伟善. LiF添加剂改善含锂陶瓷隔膜与4.35 V LiNi0.8Co0.1Mn0.1O2 正极的界面稳定性[J]. 储能科学与技术, 2023, 12(8): 2361-2369. |
[10] | 左安昊, 方儒卿, 李哲. 锂离子电池单颗粒动力学表征方法综述[J]. 储能科学与技术, 2023, 12(8): 2457-2481. |
[11] | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. |
[12] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[13] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[14] | 冯准. 基于石墨烯电极的埃洛石/聚苯胺超高柔性复合电极[J]. 储能科学与技术, 2023, 12(6): 1794-1803. |
[15] | 宋缙华, 张兴浩, 丰震河, 程广玉, 顾洪汇, 顾海涛, 王可. 基于原位参比的氧化亚硅-石墨复合负极循环衰减机制[J]. 储能科学与技术, 2023, 12(4): 1059-1065. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 224
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||