储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 30-41.doi: 10.19799/j.cnki.2095-4239.2024.0599
要义杰1,2(), 张峻伟1,2, 赵燕君1,2, 梁宏成1,2, 赵冬妮1,2(
)
收稿日期:
2024-07-01
修回日期:
2024-09-05
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
赵冬妮
E-mail:582453117@qq.com;zdn129@lut.edu.cn
作者简介:
要义杰(2001—),男,硕士研究生,研究方向为电化学储能技术,E-mail:582453117@qq.com;
基金资助:
Yijie YAO1,2(), Junwei ZHANG1,2, Yanjun ZHAO1,2, Hongcheng LIANG1,2, Dongni ZHAO1,2(
)
Received:
2024-07-01
Revised:
2024-09-05
Online:
2025-01-28
Published:
2025-02-25
Contact:
Dongni ZHAO
E-mail:582453117@qq.com;zdn129@lut.edu.cn
摘要:
钠离子电池(SIBs)因其资源丰富、成本低廉、安全性高以及对环境友好等优势被认为是后锂时代最有前途的电池技术。然而,如果没有热保护,钠离子电池在寒冷地区和季节下的应用会受到严重限制。尽管许多单独的过程都会造成低温下SIBs常见的容量损失,但其中大多数过程都会受到电池内部液态电解液的影响。这是因为电解液流动性在低温环境中下降,而且电解液与电极之间的兼容性变差,钠离子(Na+)传输能力显著下降,这会导致SIBs性能突然下降以及循环寿命显著缩短。因此,本文从Na+在主体电解液和界面处的行为进行阐述,从电解质盐、溶剂和添加剂等方面总结了改善SIBs低温下性能的策略,并且指出Na+通过界面处的动力学下降是影响低温下电池性能的主要原因。因此本文着重介绍了关于溶剂化结构的新见解,并且对基于调控溶剂化结构来改善电极/电解液界面(EEI)膜组成以及降低脱溶剂化能势垒的低温电解液设计策略进行系统分析。最后,本文提出了一些基于提升界面动力学改善电池低温性能的潜在策略,旨在更有效地指导低温SIBs的设计。
中图分类号:
要义杰, 张峻伟, 赵燕君, 梁宏成, 赵冬妮. 界面动力学对钠离子电池低温性能的影响[J]. 储能科学与技术, 2025, 14(1): 30-41.
Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 30-41.
1 | DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. DOI: 10.1002/aenm.201703137. |
2 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
3 | ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Letters, 2020, 5(11): 3544-3547. DOI: 10.1021/acsenergylett.0c02181. |
4 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. DOI: 10.1021/cr500192f. |
5 | WEST K, ZACHAU-CHRISTIANSEN B, JACOBSEN T, et al. Solid-state sodium cells—An alternative to lithium cells?[J]. Journal of Power Sources, 1989, 26(3/4): 341-345. DOI: 10.1016/0378-7753(89)80144-2. |
6 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054. | |
7 | WANG Y Y, LAN H, DONG S, et al. A high-power rechargeable sodium-ion full battery operating at -40 ℃[J]. Advanced Functional Materials, 2024, 34(26): 2315498. DOI: 10.1002/adfm. 202315498. |
8 | GUO X Y, WANG Z B, DENG Z, et al. Design principles for aqueous Na-ion battery cathodes[J]. Chemistry of Materials, 2020, 32(16): 6875-6885. DOI: 10.1021/acs.chemmater.0c01582. |
9 | VIGNAROOBAN K, KUSHAGRA R, ELANGO A, et al. Current trends and future challenges of electrolytes for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2829-2846. DOI: 10.1016/j.ijhydene.2015.12.090. |
10 | LIANG X H, HWANG J Y, SUN Y K. Practical cathodes for sodium-ion batteries: Who will take the crown?[J]. Advanced Energy Materials, 2023, 13(37): 2301975. DOI: 10.1002/aenm. 202301975. |
11 | BAI X, WU N N, YU G C, et al. Recent advances in anode materials for sodium-ion batteries[J]. Inorganics, 2023, 11(7): 289. DOI: 10.3390/inorganics11070289. |
12 | XUE Y C, GAO M Y, WU M R, et al. A promising hard carbon-soft carbon composite anode with boosting sodium storage performance[J]. ChemElectroChem, 2020, 7(19): 4010-4015. DOI: 10.1002/celc.202000932. |
13 | 张广相, 马驰, 付传凯, 等. 钠离子电池低温电解质的研究进展与挑战[J]. 化学进展, 2023, 35(10): 1534-1543. DOI: 10.7536/PC230319. |
ZHANG G X, MA C, FU C K, et al. Advances and challenges of low-temperature electrolyte for sodium-ion batteries[J]. Progress in Chemistry, 2023, 35(10): 1534-1543. DOI: 10.7536/PC230319. | |
14 | YANG J Y, WANG M X, RUAN J F, et al. Research progress in non-aqueous low-temperature electrolytes for sodium-based batteries[J]. Science China Chemistry, 2024, 67(12): 4063-4084. DOI: 10.1007/s11426-024-1964-7. |
15 | ZHANG S S. Design aspects of electrolytes for fast charge of Li-ion batteries[J]. InfoMat, 2021, 3(1): 125-130. DOI: 10.1002/inf2.12159. |
16 | ZHANG S S, XU K, JOW T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources, 2006, 156(2): 629-633. DOI: 10.1016/j.jpowsour.2005.04.023. |
17 | DOUCEY L, REVAULT M, LAUTIÉ A, et al. A study of the Li/Li+ couple in DMC and PC solvents Part 1: Characterization of LiAsF6/DMC and LiAsF6/PC solutions[J]. Electrochimica Acta, 1999, 44(14): 2371-2377. DOI: 10.1016/S0013-4686(98)00365-X. |
18 | KONDO K, SANO M, HIWARA A, et al. Conductivity and solvation of Li+ ions of LiPF6 in propylene carbonate solutions[J]. The Journal of Physical Chemistry B, 2000, 104(20): 5040-5044. DOI: 10.1021/jp000142f. |
19 | MUHURI P K, DAS B, HAZRA D K. Ionic association of some lithium salts in 1, 2-dimethoxyethane. A Raman spectroscopic and conductivity study[J]. The Journal of Physical Chemistry B, 1997, 101(17): 3329-3332. DOI: 10.1021/jp963747d. |
20 | PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. DOI: 10.1039/C8EE01286E. |
21 | LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews, 2022, 51(11): 4484-4536. DOI: 10.1039/D1CS00948F. |
22 | COHN A P, SHARE K, CARTER R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano Letters, 2016, 16(1): 543-548. DOI: 10.1021/acs.nanolett.5b04187. |
23 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. DOI: 10.1021/cr030203g. |
24 | PURUSHOTHAM U, TAKENAKA N, NAGAOKA M. Additive effect of fluoroethylene and difluoroethylene carbonates for the solid electrolyte interphase film formation in sodium-ion batteries: A quantum chemical study[J]. RSC Advances, 2016, 6(69): 65232-65242. DOI: 10.1039/C6RA09560G. |
25 | FONDARD J, IRISARRI E, COURRÈGES C, et al. SEI composition on hard carbon in Na-ion batteries after long cycling: Influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF)[J]. Journal of the Electrochemical Society, 2020, 167(7): 070526. DOI: 10.1149/1945-7111/ab75fd. |
26 | SONG X N, MENG T, DENG Y M, et al. The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries[J]. Electrochimica Acta, 2018, 281: 370-377. DOI: 10.1016/j.electacta.2018.05.185. |
27 | PARK J, KU K, GIM J, et al. Multifunctional effect of Fe substitution in Na layered cathode materials for enhanced storage stability[J]. ACS Applied Materials & Interfaces, 2023, 15(32): 38454-38462. DOI: 10.1021/acsami.3c07068. |
28 | LV W X, ZHU C J, CHEN J, et al. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chemical Engineering Journal, 2021, 418: 129400. DOI: 10.1016/j.cej.2021.129400. |
29 | YANG M, CHEN K A, LI H, et al. Molecular adsorption-induced interfacial solvation regulation to stabilize graphite anode in ethylene carbonate-free electrolytes[J]. Advanced Functional Materials, 2023, 33(47): 2306828. DOI: 10.1002/adfm. 202306828. |
30 | GUO Y P, LI D, XIONG R D, et al. Investigation of the temperature-dependent behaviours of Li metal anode[J]. Chemical Communications, 2019, 55(66): 9773-9776. DOI: 10. 1039/C9CC04897A. |
31 | HAN Y H, JIE Y L, HUANG F Y, et al. Enabling stable lithium metal anode through electrochemical kinetics manipulation[J]. Advanced Functional Materials, 2019, 29(46): 1904629. DOI: 10.1002/adfm.201904629. |
32 | DONG X L, WANG Y G, XIA Y Y. Promoting rechargeable batteries operated at low temperature[J]. Accounts of Chemical Research, 2021, 54(20): 3883-3894. DOI: 10.1021/acs.accounts. 1c00420. |
33 | HU L, DENG J J, LIN Y X, et al. Restructuring electrolyte solvation by a versatile diluent toward beyond 99.9% coulombic efficiency of sodium plating/stripping at ultralow temperatures[J]. Advanced Materials, 2024, 36(17): e2312161. DOI: 10.1002/adma.202312161. |
34 | QU G M, WEI H, ZHAO S S, et al. A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries[J]. Advanced Materials, 2024, 36(29): 2400370. DOI: 10.1002/adma.202400370. |
35 | CHAI D D, YAN H T, WANG X, et al. Retuning solvating ability of ether solvent by anion chemistry toward 4.5 V class Li metal battery[J]. Advanced Functional Materials, 2024, 34(8): 2310516. DOI: 10.1002/adfm.202310516. |
36 | CHEN K A, SHEN X H, LUO L B, et al. Correlating the solvating power of solvents with the strength of ion-dipole interaction in electrolytes of lithium-ion batteries[J]. Angewandte Chemie, 2023, 135(47): e202312373. DOI: 10.1002/ange.202312373. |
37 | LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry, 2021, 27(64): 15842-15865. DOI: 10.1002/chem. 202101407. |
38 | YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie (International Ed), 2021, 60(8): 4090-4097. DOI: 10.1002/anie.202011482. |
39 | MA T, NI Y X, WANG Q R, et al. Optimize lithium deposition at low temperature by weakly solvating power solvent[J]. Angewandte Chemie (International Ed), 2022, 61(39): e202207927. DOI: 10.1002/anie.202207927. |
40 | TANG Z, WANG H, WU P F, et al. Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2022, 61(18): e202200475. DOI: 10.1002/anie.202200475. |
41 | KIM H, HONG J, PARK Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. DOI: 10.1002/adfm. 201402984. |
42 | SU D W, KRETSCHMER K, WANG G X. Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: A case study of ZnS nanospheres[J]. Advanced Energy Materials, 2016, 6(2): 1501785. DOI: 10.1002/aenm. 201501785. |
43 | LAI P B, HUANG B Y, DENG X D, et al. A localized high concentration carboxylic ester-based electrolyte for high-voltage and low temperature lithium batteries[J]. Chemical Engineering Journal, 2023, 461: 141904. DOI: 10.1016/j.cej.2023.141904. |
44 | ZHANG J, WANG D W, LV W, et al. Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges[J]. Advanced Energy Materials, 2018, 8(26): 1801361. DOI: 10.1002/aenm.201801361. |
45 | ZHOU X Z, HUANG Y H, WEN B, et al. Regulation of anion-Na+ coordination chemistry in electrolyte solvates for low-temperature sodium-ion batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(5): e2316914121. DOI: 10.1073/pnas.2316914121. |
46 | YUAN S, CAO S K, CHEN X, et al. Deshielding anions enable solvation chemistry control of LiPF6-based electrolyte toward low-temperature lithium-ion batteries[J]. Advanced Materials, 2024, 36(16): e2311327. DOI: 10.1002/adma.202311327. |
47 | 张晶晶, 崔孝玲, 赵冬妮, 等. 高浓度电解液对电极/电解液界面的影响[J]. 储能科学与技术, 2021, 10(1): 143-149. DOI: 10.19799/j.cnki.2095-4239.2020.0238. |
ZHANG J J, CUI X L, ZHAO D N, et al. Effects of concentrated electrolytes on the electrode/electrolyte interface[J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. DOI: 10.19799/j.cnki.2095-4239.2020.0238. | |
48 | SMART M C, RATNAKUMAR B V, CHIN K B, et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157(12): A1361. DOI: 10.1149/1.3501236. |
49 | PARK K, JO Y, KOO B, et al. Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte[J]. Chemical Engineering Journal, 2022, 427: 131889. DOI: 10.1016/j.cej.2021.131889. |
50 | PARK G, LEE K, YOO D J, et al. Strategy for stable interface in lithium metal batteries: Free solvent derived vs anion derived[J]. ACS Energy Letters, 2022, 7(12): 4274-4281. DOI: 10.1021/acsenergylett.2c02399. |
51 | YAMADA Y, YAMADA A. Review—Superconcentrated electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2406-A2423. DOI: 10.1149/2. 0041514jes. |
52 | JIANG G X, LI F, WANG H P, et al. Perspective on high-concentration electrolytes for lithium metal batteries[J]. Small Structures, 2021, 2(5): 2000122. DOI: 10.1002/sstr.202000122. |
53 | TIAN Z N, ZOU Y G, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science, 2022, 9(22): e2201207. DOI: 10.1002/advs.202201207. |
54 | HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6: 303-313. DOI: 10.1038/s41560-021-00783-z. |
55 | ZHENG J M, CHEN S R, ZHAO W G, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3(2): 315-321. DOI: 10.1021/acsenergylett.7b01213. |
56 | YANG C, LIU X W, LIN Y, et al. Entropy-driven solvation toward low-temperature sodium-ion batteries with temperature-adaptive feature[J]. Advanced Materials, 2023, 35(28): e2301817. DOI: 10.1002/adma.202301817. |
57 | CHEN Y Q, HE Q, ZHAO Y, et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery[J]. Nature Communications, 2023, 14(1): 8326. DOI: 10.1038/s41467-023-43163-9. |
[1] | 李昌豪, 汪书苹, 杨献坤, 曾子琪, 周昕玥, 谢佳. 低温型锂离子电池中的非水电解质研究进展[J]. 储能科学与技术, 2024, 13(7): 2286-2299. |
[2] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[3] | 陆洋, 闫帅帅, 马骁, 刘誌, 章伟立, 刘凯. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242. |
[4] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
[5] | 李想, 刘德重, 袁开, 陈大鹏. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. |
[6] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
[7] | 王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269. |
[8] | 黄嘉琦, 熊杰明, 谭恩忠, 孙心语, 程李巍, 王华. 重新审视低温钠金属半电池[J]. 储能科学与技术, 2024, 13(7): 2151-2160. |
[9] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[10] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
[11] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
[12] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[13] | 李征, 杨振忠, 王琼, 胡仁宗. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. |
[14] | 程广玉, 刘新伟, 刘硕, 顾海涛, 王可. 调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升[J]. 储能科学与技术, 2024, 13(7): 2171-2180. |
[15] | 赵飞, 陈英华, 马征, 李茜, 明军. 钾离子电池低温电解质的研究进展[J]. 储能科学与技术, 2024, 13(7): 2308-2316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||