储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 30-41.doi: 10.19799/j.cnki.2095-4239.2024.0599

• 储能材料与器件 • 上一篇    下一篇

界面动力学对钠离子电池低温性能的影响

要义杰1,2(), 张峻伟1,2, 赵燕君1,2, 梁宏成1,2, 赵冬妮1,2()   

  1. 1.兰州理工大学 石油化工学院
    2.甘肃省低碳能源化工重点实验室,甘肃 兰州 730050
  • 收稿日期:2024-07-01 修回日期:2024-09-05 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 赵冬妮 E-mail:582453117@qq.com;zdn129@lut.edu.cn
  • 作者简介:要义杰(2001—),男,硕士研究生,研究方向为电化学储能技术,E-mail:582453117@qq.com
  • 基金资助:
    国家自然科学基金(22369011);甘肃省重点研发专项(23YFGA0053)

Effect of interfacial dynamics on low temperature performance of sodium-ion batteries

Yijie YAO1,2(), Junwei ZHANG1,2, Yanjun ZHAO1,2, Hongcheng LIANG1,2, Dongni ZHAO1,2()   

  1. 1.College of Petrochemical Engineering, Lanzhou University of Technology
    2.Gansu Province Key Laboratory of Low Carbon Energy and Chemical Industry, Lanzhou 730050, Gansu, China
  • Received:2024-07-01 Revised:2024-09-05 Online:2025-01-28 Published:2025-02-25
  • Contact: Dongni ZHAO E-mail:582453117@qq.com;zdn129@lut.edu.cn

摘要:

钠离子电池(SIBs)因其资源丰富、成本低廉、安全性高以及对环境友好等优势被认为是后锂时代最有前途的电池技术。然而,如果没有热保护,钠离子电池在寒冷地区和季节下的应用会受到严重限制。尽管许多单独的过程都会造成低温下SIBs常见的容量损失,但其中大多数过程都会受到电池内部液态电解液的影响。这是因为电解液流动性在低温环境中下降,而且电解液与电极之间的兼容性变差,钠离子(Na+)传输能力显著下降,这会导致SIBs性能突然下降以及循环寿命显著缩短。因此,本文从Na+在主体电解液和界面处的行为进行阐述,从电解质盐、溶剂和添加剂等方面总结了改善SIBs低温下性能的策略,并且指出Na+通过界面处的动力学下降是影响低温下电池性能的主要原因。因此本文着重介绍了关于溶剂化结构的新见解,并且对基于调控溶剂化结构来改善电极/电解液界面(EEI)膜组成以及降低脱溶剂化能势垒的低温电解液设计策略进行系统分析。最后,本文提出了一些基于提升界面动力学改善电池低温性能的潜在策略,旨在更有效地指导低温SIBs的设计。

关键词: 钠离子电池(SIBs), 低温, 电极/电解液界面, 溶剂化结构, 脱溶剂化

Abstract:

Sodium-ion batteries (SIBs) are considered a highly promising battery technology in the post-lithium era due to their abundant resources, affordability, high safety, and eco-friendliness. However, their use in cold regions and seasons is significantly limited without appropriate thermal protection. Although several factors contribute to the common capacity loss of SIBs at low temperatures, most are associated with the liquid electrolyte. In low-temperature environments, the fluidity of the electrolyte decreases, leading to poor compatibility between the electrolyte and the electrode. Therefore, the transport capacity of the sodium ion(Na+)in the electrolyte significantly decreases, resulting in a rapid decline in SIB performance and a substantial reduction in cycle life. This study explores the behavior of Na+ in the main electrolyte and at the interface between electrolyte and electrodes, summarizes the strategies to improve the performance of SIBs at low temperatures focusing on electrolyte salts, solvents, and additives, and highlights that the kinetic decline of Na+ through the interface is the primary factor affecting the performance of the battery at low temperatures. In addition, this study introduces new insights on solvation structure and systematically examines the design strategies of low-temperature electrolytes based on the regulation of solvation structure to improve the composition of the electrode/electrolyte interface and reduce the potential barrier of desolvation energy. Furthermore, potential approaches are proposed to improve the low-temperature performance of the battery by enhancing interface dynamics, providing valuable guidance for the effective design of low-temperature SIBs.

Key words: sodium-ion batteries (SIBs), low-temperature, electrode/electrolyte interface, solvation structure, desolvation

中图分类号: