1 |
IEA, Net zero roadmap: A global pathway to keep the 1.5 °C goal in reach [R], IEA, Paris, 2023. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
|
2 |
张杨, 陶生虎, 张笑波等. 配电网储能设备运行策略与容量的协调优化[J]. 储能科学与技术, 2024, 13(3): 903-905.
|
|
ZHANG Y, TAO S H, ZHANG X B, et al. Coordinated optimization of operation strategy and capacity of energy storage equipment in distribution network[J]. Energy Storage Science and Technology, 2024, 13(3): 903-905.
|
3 |
YU Z, JIA X, CAI Y, et al. Electrolyte engineering for efficient and stable vanadium redox flow batteries [J]. Energy Storage Materials, 2024, 69: 103404.
|
4 |
LI Y, KIENBAUM D, LüTH T, et al. Long term performance evaluation of a commercial vanadium flow battery system [J]. Journal of Energy Storage, 2024, 90(Part A): 111790.
|
5 |
张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望 [J]. 储能科学与技术, 2022, 11(9): 2772-80.
|
|
ZHANG H M. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780.
|
6 |
YE L, QI S, CHENG T, et al. Vanadium redox flow battery: Review and perspective of 3D electrodes [J]. ACS Nano, 2024, 18(29): 18852-18869.
|
7 |
HUANG Y, XU J, HUANG X, et al. Advanced vanadium redox flow battery facilitated by synergistic effects of the Co2P-modified electrode [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(34): 12837-12844.
|
8 |
YE J, XIA L, LI H, et al. The critical analysis of membranes toward sustainable and efficient vanadium redox flow batteries [J]. Advanced Materials, 2024, 36(28): 2402090.
|
9 |
QI M, YAN H, WEI W, et al. Covalent triazine frameworks crosslinked microporous polymer membranes with fast and selective ion transport for ultra-stable vanadium redox flow batteries [J]. Chemical Engineering Journal, 2024, 497: 155068.
|
10 |
ZOU W-J, KIM Y-B, JUNG S. Capacity fade prediction for vanadium redox flow batteries during long-term operations [J]. Applied Energy, 2024, 356: 122329.
|
11 |
谢聪鑫, 郑琼, 李先锋等. 液流电池技术的最新进展 [J]. 储能科学与技术, 2017, 6(5): 1050-1057.
|
|
XIE C X, ZHENG Q, LI X F, et al. Current advances in the flow battery technology [J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057.
|
12 |
JIRABOVORNWISUT T, ARPORNWICHANOP A. A review on the electrolyte imbalance in vanadium redox flow batteries [J]. International Journal of Hydrogen Energy, 2019, 44(45): 24485-24509.
|
13 |
DüERKOP D, WIDDECKE H, SCHILDE C, et al. Polymer membranes for all-vanadium redox flow batteries: A review [J]. Membranes, 2021, 11(3): 214.
|
14 |
ZHANG Y, MA K, KUANG X, et al. Real-time study of the disequilibrium transfer in vanadium flow batteries at different states of charge via refractive index detection [J]. The Journal of Physical Chemistry C, 2018, 122(50): 28550-28555.
|
15 |
JIANG B, WU L, YU L, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries [J]. Journal of Membrane Science, 2016, 510: 18-26.
|
16 |
ZHAI L, ZHU Y-L, WANG G, et al. Ionic-nanophase hybridization of nafion by supramolecular patching for enhanced proton selectivity in redox flow batteries [J]. Nano Letters, 2023, 23(9): 3887-3896.
|
17 |
HE H, SONG S, ZHAI L, et al. Supramolecular modifying Nafion with fluoroalkyl-functionalized polyoxometalate nanoclusters for high-selective proton conduction [J]. Angewandte Chemie International Edition, 2024, 63(36): e202409006.
|
18 |
BUI T T, SHIN M, ABBAS S, et al. Sulfonated para-polybenzimidazole membranes for use in vanadium redox flow batteries [J]. Advanced Energy Materials, 2024, 2401375.
|
19 |
BARD A J, FAULKNER L R, Electrochemical Methods. Fundamentals and Applications (2nd Edition) [M]. John Wiley & Sons, Inc., 2001.
|
20 |
KöBLE K, ERSHOV A, DUAN K, et al. Insights into the hydrogen evolution reaction in vanadium redox flow batteries: A synchrotron radiation based X-ray imaging study, Journal of Energy Chemistry, 2024, 91:132-144.
|
21 |
Al NAJJAR T, OMRAN M M, ALLAM N K, et al. Tungsten oxide nanostructures for all-vanadium redox flow battery: Enhancing the V(II)/(VIII) reaction and inhibiting H2 evolution [J]. Journal of Energy Storage, 2024, 79: 110123.
|
22 |
MA T, HUANG Z, XIE X, et al. Evaluation of the effect of hydrogen evolution reaction on the performance of all-vanadium redox flow batteries [J]. Electrochimica Acta, 2024, 504: 144895.
|
23 |
HUANG Z, LIU Y, XIE X, et al. Experimental validation of side reaction on capacity fade of vanadium redox flow battery [J]. Journal of The Electrochemical Society, 2024, 171(1): 010521.
|
24 |
WANG K, LIU L, XI J, et al. Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method [J]. Journal of Power Sources, 2017, 338: 17-25.
|
25 |
BHATTARAI A, GHIMIRE P C, WHITEHEAD A, et al. Novel approaches for solving the capacity fade problem during operation of a vanadium redox flow battery [J]. Batteries, 2018, 4(4): 48.
|
26 |
LI Z, LIU L, ZHAO Y, et al. The indefinite cycle life via a method of mixing and online electrolysis for vanadium redox flow batteries [J]. Journal of Power Sources, 2019, 438: 226990.
|
27 |
HEO J, HAN J-Y, KIM S, et al. Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries [J]. Nature Communications, 2019, 10(1): 4412.
|
28 |
MATSUI T, KITAGAWA Y, OKUMURA M, et al. Accurate standard hydrogen electrode potential and applications to the redox potentials of vitamin C and NAD/NADH [J]. The Journal of Physical Chemistry A, 2015, 119(2): 369-376.
|
29 |
PARK G, LIM Y, HYUN K, et al. Rapid preparation of desirable vanadium electrolyte using ascorbic acid as a reducing agent in vanadium redox flow batteries [J]. Journal of Power Sources, 2024, 589: 233770.
|
30 |
WEI L, FAN X Z, JIANG H R, et al. Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method [J]. Journal of Power Sources, 2020, 478: 228725.
|
31 |
LEUNG P, SHAH A A, SANZ L, et al. Recent developments in organic redox flow batteries: A critical review [J]. Journal of Power Sources, 2017, 360: 243-283.
|
32 |
YE T, LI Z, YAN H, et al. Magnetic frustration effect on the rate performance of LiNi0.6Co0.4-xMnxO2 cathodes for lithium-ion batteries [J]. Advanced Energy Materials, 2022, 12(33): 2201556.
|
33 |
KöBLE K, SCHILLING M, EIFERT L, et al. Revealing the multifaceted impacts of electrode modifications for vanadium redox flow battery electrodes [J]. ACS Applied Materials & Interfaces, 2023, 15(40): 46775-46789.
|
34 |
HOSSAIN M H, ABDULLAH N, TAN K H, et al. Evolution of vanadium redox flow battery in electrode [J]. The Chemical Record, 2023, 24(1): e202300092.
|
35 |
徐冉, 王宝冬, 王绍亮等. 杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术, 2024, 13(6): 1849-1860.
|
|
XU R, WANG B D, WANG S L, et al. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1849-1860.
|
36 |
MILLER M A, BOURKE A, QUILL N, et al. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency [J]. Journal of The Electrochemical Society, 2016, 163(9): A2095-A2102.
|