储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 601-612.doi: 10.19799/j.cnki.2095-4239.2024.0674
李跃林1(), 刘祉妤2, 郭森1, 刘晓君1, 张蓬亮1, 王程程1, 梁原1, 王锐2(
)
收稿日期:
2024-07-22
修回日期:
2024-08-22
出版日期:
2025-02-28
发布日期:
2025-03-18
通讯作者:
王锐
E-mail:17006586@ceic.com;rui.wang.ej@chnenergy.com.cn
作者简介:
李跃林(1982—),男,本科,高级工程师,从事储能方向研究,E-mail:17006586@ceic.com;
基金资助:
Yuelin LI1(), Zhiyu LIU2, Sen GUO1, Xiaojun LIU1, Pengliang ZHANG1, Chengcheng WANG1, Yuan LIANG1, Rui WANG2(
)
Received:
2024-07-22
Revised:
2024-08-22
Online:
2025-02-28
Published:
2025-03-18
Contact:
Rui WANG
E-mail:17006586@ceic.com;rui.wang.ej@chnenergy.com.cn
摘要:
全钒液流电池(VRFB)作为一种极具前途的大规模储能技术,提高电池功率密度和运行效率是降低液流电池成本的有效途径之一。电极是实现电能与化学能相互转换的核心场所,电极材料的结构特性和表面性质直接影响电化学反应速率、电池内阻和电解液传输过程,从而影响电池性能。通过开发宏观、微观有序的电极结构,达到电极传输性能和电化学性能协同提升的目的。本文全面综述了对电极从宏观到微观层面上的结构设计及在全钒液流电池中的研究进展。在宏观尺度上,总结分析了电极压缩比、电极流场结构、电极几何形状等结构参数对电池性能的影响;在微观尺度上,通过物理和化学方法构建了多级孔分布的单层电极结构和具有梯度分布的多层电极结构,可以增大电极比表面积,促进电化学反应,同时改善电解液在电极表面的扩散。最后,对电极结构设计存在的问题及下一步研发方向进行了展望。
中图分类号:
李跃林, 刘祉妤, 郭森, 刘晓君, 张蓬亮, 王程程, 梁原, 王锐. 全钒液流电池的电极结构研究进展[J]. 储能科学与技术, 2025, 14(2): 601-612.
Yuelin LI, Zhiyu LIU, Sen GUO, Xiaojun LIU, Pengliang ZHANG, Chengcheng WANG, Yuan LIANG, Rui WANG. Research progress on electrode structure design of vanadium redox flow battery[J]. Energy Storage Science and Technology, 2025, 14(2): 601-612.
1 | LU M Y, YANG W W, BAI X S, et al. Performance improvement of a vanadium redox flow battery with asymmetric electrode designs[J]. Electrochimica Acta, 2019, 319: 210-226. DOI: 10.1016/j.electacta.2019.06.158. |
2 | WANG Z Y, REN J Y, SUN J, et al. Characterizations and selections of electrodes with optimal performance for large-scale vanadium redox flow batteries through lab-scale experiments[J]. Journal of Power Sources, 2022, 549: 232094. DOI: 10.1016/j.jpowsour.2022.232094. |
3 | XU Z Y, JING M H, LIU J G, et al. Advanced dual-gradient carbon nanofibers/graphite felt composite electrode for the next-generation vanadium flow battery[J]. Journal of Materials Science & Technology, 2023, 136: 32-42. DOI: 10.1016/j.jmst.2022. 06.051. |
4 | GAO J Y, YANG Y J, REN Y J, et al. A novel hafnium boride catalyst for vanadium redox flow battery[J]. Ionics, 2022, 28(9): 4273-4282. DOI: 10.1007/s11581-022-04656-7. |
5 | SUN B, SKYLLAS-KAZACOS M. Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment[J]. Electrochimica Acta, 1992, 37(7): 1253-1260. DOI: 10.1016/0013-4686(92)85064-r. |
6 | LIU T, LI X F, XU C, et al. Activated carbon fiber paper based electrodes with high electrocatalytic activity for vanadium flow batteries with improved power density[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4626-4633. DOI: 10.1021/acsami.6b14478. |
7 | YUE L, LI W S, SUN F Q, et al. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery[J]. Carbon, 2010, 48(11): 3079-3090. DOI: 10.1016/j.carbon. 2010.04.044. |
8 | ZHANG W G, XI J Y, LI Z H, et al. Electrochemical activation of graphite felt electrode for VO2+/VO2 + redox couple application[J]. Electrochimica Acta, 2013, 89: 429-435. DOI: 10.1016/j.electacta.2012.11.072. |
9 | ZHANG Z Y, XI J Y, ZHOU H P, et al. KOH etched graphite felt with improved wettability and activity for vanadium flow batteries[J]. Electrochimica Acta, 2016, 218: 15-23. DOI: 10.1016/j.electacta.2016.09.099. |
10 | BUSACCA C, DI BLASI O, GIACOPPO G, et al. High performance electrospun nickel manganite on carbon nanofibers electrode for vanadium redox flow battery[J]. Electrochimica Acta, 2020, 355: 136755. DOI: 10.1016/j.electacta.2020.136755. |
11 | JING M H, ZHANG X S, FAN X Z, et al. CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery[J]. Electrochimica Acta, 2016, 215: 57-65. DOI: 10.1016/j.electacta.2016.08.095. |
12 | 孙洁. 基于流道结构设计的液流电池多孔电极中离子传质改进研究[D]. 杭州: 浙江大学, 2021. DOI: 10.27461/d.cnki.gzjdx. 2021.002951. |
SUN J. Study on improvement of ion mass transfer in porous electrode of flow battery based on flow channel structure design[D]. Hangzhou: Zhejiang University, 2021. DOI: 10.27461/d.cnki.gzjdx.2021.002951. | |
13 | AARON D, TANG Z J, PAPANDREW A B, et al. Polarization curve analysis of all-vanadium redox flow batteries[J]. Journal of Applied Electrochemistry, 2011, 41(10): 1175-1182. DOI: 10.1007/s10800-011-0335-7. |
14 | XU Q, ZHAO T S. Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(26): 10841-10848. DOI: 10. 1039/C3CP51944A. |
15 | 赵天寿, 蒋浩然, 李文甲. 流体电池的化学工程科学问题[J]. 中国科学基金, 2023, 37(2): 170-177. DOI: 10.16262/j.cnki.1000-8217.2023.02.003. |
ZHAO T S, JIANG H R, LI W J. Chemical engineering scientific issue in flow cells[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 170-177. DOI: 10.16262/j.cnki.1000-8217.2023.02.003. | |
16 | WANG Q, QU Z G, JIANG Z Y, et al. The numerical study of vanadium redox flow battery performance with different electrode morphologies and electrolyte inflow patterns[J]. Journal of Energy Storage, 2021, 33: 101941. DOI: 10.1016/j.est.2020.101941. |
17 | EMMETT R K, ROBERTS M E. Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage[J]. Journal of Power Sources, 2021, 506: 230087. DOI: 10.1016/j.jpowsour.2021.230087. |
18 | IYER V A, SCHUH J K, MONTOTO E C, et al. Assessing the impact of electrolyte conductivity and viscosity on the reactor cost and pressure drop of redox-active polymer flow batteries[J]. Journal of Power Sources, 2017, 361: 334-344. DOI: 10.1016/j.jpowsour.2017.06.052. |
19 | PARK S K, SHIM J, YANG J H, et al. The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery[J]. Electrochimica Acta, 2014, 116: 447-452. DOI: 10.1016/j.electacta.2013.11.073. |
20 | GUNDLAPALLI R, JAYANTI S. Effect of electrode compression and operating parameters on the performance of large vanadium redox flow battery cells[J]. Journal of Power Sources, 2019, 427: 231-242. DOI: 10.1016/j.jpowsour.2019.04.059. |
21 | ZHANG K Y, YAN C W, TANG A. Unveiling electrode compression impact on vanadium flow battery from polarization perspective via a symmetric cell configuration[J]. Journal of Power Sources, 2020, 479: 228816. DOI: 10.1016/j.jpowsour. 2020.228816. |
22 | OH K, WON S, JU H. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries[J]. Electrochimica Acta, 2015, 181: 13-23. DOI: 10.1016/j.electacta. 2015.02.212. |
23 | BECKER M, BREDEMEYER N, TENHUMBERG N, et al. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries[J]. Journal of Power Sources, 2016, 307: 826-833. DOI: 10.1016/j.jpowsour.2016.01.011. |
24 | AARON D S, LIU Q, TANG Z, et al. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture[J]. Journal of Power Sources, 2012, 206: 450-453. DOI: 10.1016/j.jpowsour.2011.12.026. |
25 | HOUSER J, PEZESHKI A, CLEMENT J T, et al. Architecture for improved mass transport and system performance in redox flow batteries[J]. Journal of Power Sources, 2017, 351: 96-105. DOI: 10.1016/j.jpowsour.2017.03.083. |
26 | BHATTARAI A, WAI N, SCHWEISS R, et al. Advanced porous electrodes with flow channels for vanadium redox flow battery[J]. Journal of Power Sources, 2017, 341: 83-90. DOI: 10.1016/j.jpowsour.2016.11.113. |
27 | BHATTARAI A, WAI N, SCHWEISS R, et al. Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level[J]. Applied Energy, 2019, 236: 437-443. DOI: 10.1016/j.apenergy.2018.12.001. |
28 | LYU W R, LUO Y S, XU Y H, et al. Laser perforated porous electrodes in conjunction with interdigitated flow field for mass transfer enhancement in redox flow battery[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125313. DOI: 10.1016/j.ijheatmasstransfer.2024.125313. |
29 | ZHENG Q, XING F, LI X F, et al. Dramatic performance gains of a novel circular vanadium flow battery[J]. Journal of Power Sources, 2015, 277: 104-109. DOI: 10.1016/j.jpowsour. 2014.11.142. |
30 | YUE M, ZHENG Q, XING F, et al. Flow field design and optimization of high power density vanadium flow batteries: A novel trapezoid flow battery[J]. AIChE Journal, 2018, 64(2): 782-795. DOI: 10.1002/aic.15959. |
31 | GURIEFF N, CHEUNG C Y, TIMCHENKO V, et al. Performance enhancing stack geometry concepts for redox flow battery systems with flow through electrodes[J]. Journal of Energy Storage, 2019, 22: 219-227. DOI: 10.1016/j.est.2019.02.014. |
32 | ZHENG Q, XING F, LI X F, et al. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery[J]. Journal of Power Sources, 2016, 324: 402-411. DOI: 10.1016/j.jpowsour. 2016.05.110. |
33 | KIM J, PARK H. Recent advances in porous electrodes for vanadium redox flow batteries in grid-scale energy storage systems: A mass transfer perspective[J]. Journal of Power Sources, 2022, 545: 231904. DOI: 10.1016/j.jpowsour. 2022.231904. |
34 | LAN J J, LI K, YANG L, et al. Hierarchical nano-electrocatalytic reactor for high performance polysulfides redox flow batteries[J]. ACS Nano, 2023, 17(20): 20492-20501. DOI: 10.1021/acsnano. 3c07085. |
35 | JIANG H R, ZHANG B W, SUN J, et al. A gradient porous electrode with balanced transport properties and active surface areas for vanadium redox flow batteries[J]. Journal of Power Sources, 2019, 440: 227159. DOI: 10.1016/j.jpowsour. 2019.227159. |
36 | MAYRHUBER I, DENNISON C R, KALRA V, et al. Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries[J]. Journal of Power Sources, 2014, 260: 251-258. DOI: 10.1016/j.jpowsour. 2014.03.007. |
37 | LEE K M, PAHLEVANINEZHAD M, SMITH V, et al. Improvement of vanadium redox flow battery performance obtained by compression and laser perforation of electrospun electrodes[J]. Materials Today Energy, 2023, 35: 101333. DOI: 10.1016/j.mtener.2023.101333. |
38 | ZHOU X L, ZENG Y K, ZHU X B, et al. A high-performance dual-scale porous electrode for vanadium redox flow batteries[J]. Journal of Power Sources, 2016, 325: 329-336. DOI: 10.1016/j.jpowsour.2016.06.048. |
39 | KOK M D R, KHALIFA A, GOSTICK J T. Multiphysics simulation of the flow battery cathode: Cell architecture and electrode optimization[J]. Journal of the Electrochemical Society, 2016, 163(7): A1408-A1419. DOI: 10.1149/2.1281607jes. |
40 | KABTAMU D M, CHEN J Y, CHANG Y C, et al. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries[J]. Journal of Power Sources, 2017, 341: 270-279. DOI: 10.1016/j.jpowsour.2016.12.004. |
41 | WANG R, LI Y S, HE Y L. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: Meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale[J]. Journal of Materials Chemistry A, 2019, 7(18): 10962-10970. DOI: 10.1039/C9TA00807A. |
42 | JIANG H R, SHYY W, WU M C, et al. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries[J]. Applied Energy, 2019, 233: 105-113. DOI: 10.1016/j.apenergy.2018.10.033. |
43 | 刘盛林, 张华民, 马相坤, 等. 液流电池电极结构及液流电池电堆: CN 106549161A[P]. 2017-03-29. |
LIU S L, ZHANG H M, MA X K, et al. Electrode structure of flow battery and flow battery stack: CN 106549161A[P]. 2017-03-29. | |
44 | ZHANG Z H, ZHANG B W, WEI L, et al. A composite electrode with gradient pores for high-performance aqueous redox flow batteries[J]. Journal of Energy Storage, 2023, 61: 106755. DOI: 10.1016/j.est.2023.106755. |
45 | WU Q X, LYU Y H, LIN L Y, et al. An improved thin-film electrode for vanadium redox flow batteries enabled by a dual layered structure[J]. Journal of Power Sources, 2019, 410: 152-161. DOI: 10.1016/j.jpowsour.2018.11.020. |
46 | CHEN W, KANG J L, SHU Q, et al. Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries[J]. Energy, 2019, 180: 341-355. DOI: 10.1016/j.energy.2019.05.037. |
47 | JING M H, ZHANG C L, QI X C, et al. Gradient-microstructural porous graphene gelatum/flexible graphite plate integrated electrode for vanadium redox flow batteries[J]. International Journal of Hydrogen Energy, 2020, 45(1): 916-923. DOI: 10.1016/j.ijhydene.2019.10.123. |
48 | HU G J, JING M H, WANG D W, et al. A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries[J]. Energy Storage Materials, 2018, 13: 66-71. DOI: 10.1016/j.ensm.2017.12.026. |
49 | SUN J, JIANG H R, WU M C, et al. Aligned hierarchical electrodes for high-performance aqueous redox flow battery[J]. Applied Energy, 2020, 271: 115235. DOI: 10.1016/j.apenergy. 2020.115235. |
[1] | 王泓, 张开悦. 全钒液流电池碳毡电极的热处理活化研究[J]. 储能科学与技术, 2025, 14(2): 488-496. |
[2] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[3] | 要义杰, 张峻伟, 赵燕君, 梁宏成, 赵冬妮. 界面动力学对钠离子电池低温性能的影响[J]. 储能科学与技术, 2025, 14(1): 30-41. |
[4] | 何忆南, 张锴, 周俊武, 王欣杨, 郑百林. 外部载荷对硅电极锂电池循环性能的影响[J]. 储能科学与技术, 2024, 13(8): 2559-2569. |
[5] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[6] | 王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269. |
[7] | 李泽珩, 徐磊, 姚雨星, 闫崇, 翟喜民, 郝雪纯, 陈爱兵, 黄佳琦, 别晓非, 孙焕丽, 范丽珍, 张强. 电解液改善锂离子电池低温析锂研究进展[J]. 储能科学与技术, 2024, 13(7): 2192-2205. |
[8] | 汪书苹, 杨献坤, 李昌豪, 曾子琪, 程宜风, 谢佳. 乙基膦酸二乙酯基阻燃宽温域电解液在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(7): 2161-2170. |
[9] | 徐冉, 王宝冬, 王绍亮, 张琦, 张磊, 冯子洋. 杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术, 2024, 13(6): 1849-1860. |
[10] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[11] | 张忠豪, 邱殿凯, 彭林法, 易培云. 一体式再生燃料电池双功能氧电极高分散工艺研究[J]. 储能科学与技术, 2024, 13(5): 1417-1426. |
[12] | 戴纹硕, 郭骞远, 陈向南, 张华民, 马相坤. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. |
[13] | 张爱芳, 魏邦达, 李卓昊, 杨洋, 杨添强, 姚俊, 张杰, 刘飞, 李浩秒, 王康丽, 蒋凯. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. |
[14] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[15] | 周洋, 韩培玉, 牛迎春, 徐春明, 徐泉. 金属有机框架衍生的C-Bi/CC电极制备及其在铁铬液流电池中的电化学性能[J]. 储能科学与技术, 2024, 13(2): 381-389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||