储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1849-1860.doi: 10.19799/j.cnki.2095-4239.2023.0929

• 储能材料与器件 • 上一篇    下一篇

杂原子掺杂电极用于全钒液流电池中的研究进展

徐冉1(), 王宝冬2, 王绍亮1, 张琦1, 张磊1, 冯子洋1   

  1. 1.北京低碳清洁能源研究院,北京 102211
    2.国家能源欧洲研究院有限责任公司,德国 柏林 10587
  • 收稿日期:2023-12-22 修回日期:2023-12-27 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 徐冉 E-mail:20063985@chnenergy.com.cn
  • 作者简介:徐冉(1996—),女,硕士,助理级工程师,主要研究方向为液流电池储能技术,E-mail:20063985@chnenergy.com.cn
  • 基金资助:
    耦合储能与氢能的高比例可再生能源系统关键技术与路径研究(S930021052);规模储能储热关键技术研究及示范(S930021008)

Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries

Ran XU1(), Baodong WANG2, Shaoliang WANG1, Qi ZHANG1, Lei ZHANG1, Ziyang FENG1   

  1. 1.National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
    2.NICE Europe Research GmbH, Berlin 10587, Germany
  • Received:2023-12-22 Revised:2023-12-27 Online:2024-06-28 Published:2024-06-26
  • Contact: Ran XU E-mail:20063985@chnenergy.com.cn

摘要:

液流电池因其本质安全、超长寿命等特性,是大规模储能的关键技术之一。电极材料作为全钒液流电池的核心部件,其与电解液的界面特性会对液流电池的性能产生重要影响。通过电极表面改性处理方法能够实现其在高电流密度下的电化学活性提升,而电极表面杂原子掺杂技术是目前的研究热点。本文归纳了以石墨毡为基体的杂原子掺杂机理及其研究进展,着重介绍了碳骨架的原位掺杂和电极表面的杂原子催化剂两种掺杂策略,并总结了两种掺杂策略的掺杂类型和性能差异。其中,依据杂原子的电负性和原子尺寸,阐述了电极材料原位掺杂的机理,讨论了杂原子对碳纤维电子结构的影响方式;根据碳基材料催化剂的种类,介绍了多孔炭材料、碳纳米管和石墨烯三种碳基催化剂的杂原子掺杂对电极材料电化学性能的影响规律。综合分析表明,通过电极表面的原子掺杂不仅可以增加电极反应的活性位点,促进活性离子的迁移,还可以改善其亲水性,增大电极与电解液接触的有效面积。基于此,提出了采用调控电极表面电荷分布、官能团种类、构建缺陷位点等方法有效增强电极材料的稳定性和电化学性能,并有望在实现高电流密度下电化学活性提高的同时获得较高的电导率。

关键词: 全钒液流电池, 电极, 原子掺杂, 杂原子催化

Abstract:

Flow batteries are indispensable technologies for large-scale energy storage, owing to their inherent safety and exceptionally long lifespan. In all-vanadium redox flow batteries (VRFBs), the electrode material is a crucial component, as its interface characteristics with the electrolyte substantially influence battery performance. Surface modification methods applied to the electrode facilitate enhancements in electrochemical activity, particularly under high current density conditions. Currently, electrode surface heteroatom doping technology is a focal point of research. This study summarizes the mechanisms and research progress of heteroatom doping in graphite felt (GF), specifically emphasizing two doping strategies: in-situ doping within the carbon framework and utilizing heteroatom catalysts on the electrode surface. This study also comprehensively summarizes doping types and performance differences associated with these two strategies. It explains the principles of in-situ doping in electrode materials based on the electronegativity and atomic size of heteroatoms, along with discussing how heteroatoms affect the electronic structure of carbon fibers. Additionally, it introduces the impact patterns of three carbon-based catalysts—heteroatom-doped porous carbon materials, carbon nanotubes, and graphene—on the electrochemical performance of electrode materials. The comprehensive analysis indicates that heteroatom doping on the electrode surface can increase active sites for electrode reactions, promote the migration of active ions, improve hydrophilicity, and enlarge the effective contact area between the electrode and electrolyte. Furthermore, the study suggests adopting methods such as regulating the charge distribution on the electrode surface, varying functional group types, and constructing defect sites to effectively enhance electrode materials' stability and electrochemical performance, ultimately leading to increased electrochemical activity at high current densities and higher conductivity.

Key words: vanadium redox flow battery, electrode, atomic doping, heteroatom catalyst

中图分类号: