储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1835-1848.doi: 10.19799/j.cnki.2095-4239.2023.0919

• 储能材料与器件 • 上一篇    下一篇

钠离子电池氧化石墨基负极研究进展

冯仁超1,2(), 董宇1,2, 朱新宇1,2, 刘偲1,2, 陈胜1,2, 李达3, 郭若禹3, 王斌3, 王炯辉3(), 李宁1,2(), 苏岳锋1,2, 吴锋1,2   

  1. 1.北京理工大学材料学院,北京 100081
    2.北京理工大学重庆创新中心,重庆 401120
    3.中国五矿集团(黑龙江)石墨产业有限公司,黑龙江 鹤岗 154100
  • 收稿日期:2023-12-19 修回日期:2024-01-03 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 王炯辉,李宁 E-mail:chao0420666@163.com;wangjh@minmetals.com;ningli@bit.edu.cn
  • 作者简介:冯仁超(2000—),男,硕士研究生,研究方向为钠离子电池负极,E-mail:chao0420666@163.com
  • 基金资助:
    国家重点研发计划(2021YFC2902905);重庆市科技创新与应用发展重点项目(2022TIAD-DEX0024)

Research progress on graphite oxide-based anodes for sodium-ion batteries

Renchao FENG1,2(), Yu DONG1,2, Xinyu ZHU1,2, Cai LIU1,2, Sheng CHEN1,2, Da LI3, Ruoyu GUO3, Bin WANG3, Jionghui WANG3(), Ning LI1,2(), Yuefeng SU1,2, Feng WU1,2   

  1. 1.Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    2.Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
    3.China Minmetals Group graphite Industry Co. , Ltd(Heilongjiang), Hegang 154100, Heilongjiang, China
  • Received:2023-12-19 Revised:2024-01-03 Online:2024-06-28 Published:2024-06-26
  • Contact: Jionghui WANG, Ning LI E-mail:chao0420666@163.com;wangjh@minmetals.com;ningli@bit.edu.cn

摘要:

负极材料作为钠离子电池的关键组成部分,对电池的循环稳定性以及能量密度至关重要。由于Na+半径较大,不易嵌入石墨层间,在锂离子电池领域中取得极大成功的石墨负极材料,无论在醚基或酯基电解液中均表现出低储钠容量。将石墨进行氧化处理,扩大了石墨层间距,增加储钠位点,所得氧化石墨材料储钠容量大幅度提高。以氧化石墨的制备为基础,一系列的氧化石墨基负极材料引起了广泛关注。本文通过对近期相关文献的探讨,综述了氧化石墨基负极材料特别是还原氧化石墨烯材料作为钠离子电池负极材料的研究进展,着重介绍了氧化石墨烯的制备过程、氧化石墨烯的还原途径对储钠性能的影响、还原氧化石墨烯的储钠机理、还原氧化石墨烯的官能团数量、种类对钠离子传质过程的影响;综述了杂原子掺杂还原氧化石墨烯钠离子电池负极材料的研究进展,着重介绍了N、S、B三种元素掺杂还原氧化石墨烯的物理化学性能以及电化学性能表现。综合分析表明,通过制备还原氧化石墨烯以及杂原子掺杂等策略,有望实现氧化石墨基负极材料在钠离子电池中的实际应用。

关键词: 钠离子电池, 负极材料, 石墨烯, 还原氧化石墨烯

Abstract:

Anode materials are pivotal in sodium-ion batteries' cycle stability and energy density, constituting a fundamental component. Graphite, a widely utilized material in lithium-ion batteries, faces challenges in sodium-ion batteries due to the substantial Na+ radius and complexities in embedding within the graphite interlayer. This leads to diminished sodium storage capacity in both ether electrolytes. However, through oxidation, graphite can be transformed, expanding the spacing of graphite layers and enhancing the sodium storage sites. This process substantially improves the sodium storage capacity, giving rise to graphite oxide materials that have garnered considerable attention. This study reviews the advancements in graphite-based anode materials for sodium-ion batteries, mainly focusing on reduced graphite oxide materials. It discusses the preparation process of graphene oxide, the impact of reduction pathways on sodium storage performance, the sodium storage mechanism of reduced graphene oxide, and the influence of various functional groups on sodium ion mass transfer. Furthermore, it delves into the research progress of heteroatom-doped reduced graphene oxide as sodium-ion battery anode materials, emphasizing the physicochemical and electrochemical properties of N, S, and B-doped reduced graphene oxide. Comprehensive analysis indicates that the practical application of graphite-based anode materials in sodium-ion batteries is poised for realization by preparing reduced graphene oxide and heteroatom doping.

Key words: sodium-ion batteries, anode materials, graphene, reduced graphene oxide

中图分类号: