储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1835-1848.doi: 10.19799/j.cnki.2095-4239.2023.0919
        
               		冯仁超1,2( ), 董宇1,2, 朱新宇1,2, 刘偲1,2, 陈胜1,2, 李达3, 郭若禹3, 王斌3, 王炯辉3(
), 董宇1,2, 朱新宇1,2, 刘偲1,2, 陈胜1,2, 李达3, 郭若禹3, 王斌3, 王炯辉3( ), 李宁1,2(
), 李宁1,2( ), 苏岳锋1,2, 吴锋1,2
), 苏岳锋1,2, 吴锋1,2
                  
        
        
        
        
    
收稿日期:2023-12-19
									
				
											修回日期:2024-01-03
									
				
									
				
											出版日期:2024-06-28
									
				
											发布日期:2024-06-26
									
			通讯作者:
					王炯辉,李宁
											E-mail:chao0420666@163.com;wangjh@minmetals.com;ningli@bit.edu.cn
												作者简介:冯仁超(2000—),男,硕士研究生,研究方向为钠离子电池负极,E-mail:chao0420666@163.com;
				
							基金资助:
        
               		Renchao FENG1,2( ), Yu DONG1,2, Xinyu ZHU1,2, Cai LIU1,2, Sheng CHEN1,2, Da LI3, Ruoyu GUO3, Bin WANG3, Jionghui WANG3(
), Yu DONG1,2, Xinyu ZHU1,2, Cai LIU1,2, Sheng CHEN1,2, Da LI3, Ruoyu GUO3, Bin WANG3, Jionghui WANG3( ), Ning LI1,2(
), Ning LI1,2( ), Yuefeng SU1,2, Feng WU1,2
), Yuefeng SU1,2, Feng WU1,2
			  
			
			
			
                
        
    
Received:2023-12-19
									
				
											Revised:2024-01-03
									
				
									
				
											Online:2024-06-28
									
				
											Published:2024-06-26
									
			Contact:
					Jionghui WANG, Ning LI   
											E-mail:chao0420666@163.com;wangjh@minmetals.com;ningli@bit.edu.cn
												摘要:
负极材料作为钠离子电池的关键组成部分,对电池的循环稳定性以及能量密度至关重要。由于Na+半径较大,不易嵌入石墨层间,在锂离子电池领域中取得极大成功的石墨负极材料,无论在醚基或酯基电解液中均表现出低储钠容量。将石墨进行氧化处理,扩大了石墨层间距,增加储钠位点,所得氧化石墨材料储钠容量大幅度提高。以氧化石墨的制备为基础,一系列的氧化石墨基负极材料引起了广泛关注。本文通过对近期相关文献的探讨,综述了氧化石墨基负极材料特别是还原氧化石墨烯材料作为钠离子电池负极材料的研究进展,着重介绍了氧化石墨烯的制备过程、氧化石墨烯的还原途径对储钠性能的影响、还原氧化石墨烯的储钠机理、还原氧化石墨烯的官能团数量、种类对钠离子传质过程的影响;综述了杂原子掺杂还原氧化石墨烯钠离子电池负极材料的研究进展,着重介绍了N、S、B三种元素掺杂还原氧化石墨烯的物理化学性能以及电化学性能表现。综合分析表明,通过制备还原氧化石墨烯以及杂原子掺杂等策略,有望实现氧化石墨基负极材料在钠离子电池中的实际应用。
中图分类号:
冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848.
Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848.
| 1 | CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. | 
| 2 | CABELLO M, BAI X, CHYRKA T, et al. On the reliability of sodium co-intercalation in expanded graphite prepared by different methods as anodes for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): A3804-A3813. | 
| 3 | ALI G, MEHMOOD A, HA H Y, et al. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries[J]. Scientific Reports, 2017, 7: 40910. | 
| 4 | PAN J, ZHANG Y, LI L, et al. Polyanions enhance conversion reactions for lithium/sodium‐ion batteries: the case of SbVO4 nanoparticles on reduced graphene oxide [J]. Small Methods, 2019, 3(10): 1900231-1900240. | 
| 5 | HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898. | 
| 6 | LI D, MÜLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105. | 
| 7 | YOON G, KIM H, PARK I, et al. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials, 2017, 7(2): 1601519. | 
| 8 | DAULA S S U, KAMAL H M, MAHEDI H S, et al. Understanding Na-ion adsorption in nitrogen doped graphene oxide anode for rechargeable sodium ion batteries[J]. Applied Surface Science, 2022, 579: 152147. | 
| 9 | TANG K, FU L J, WHITE R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials, 2012, 2(7): 873-877. | 
| 10 | XIN S, YIN Y X, GUO Y G, et al. A high-energy room-temperature sodium-sulfur battery[J]. Advanced Materials, 2014, 26(8): 1261-1265. | 
| 11 | WANG Z H, QIE L, YUAN L X, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon, 2013, 55: 328-334. | 
| 12 | LI Z F, BOMMIER C, CHONG Z S, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. | 
| 13 | RATHNAYAKE R M N M, DUIGNAN T T, SEARLES D J, et al. Exploring the effect of interlayer distance of expanded graphite for sodium ion storage using first principles calculations[J]. Physical Chemistry Chemical Physics, 2021, 23(4): 3063-3070. | 
| 14 | WANG S Z, GONG F, YANG S Z, et al. Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28(34): 1801806. | 
| 15 | WEN Y, HE K, ZHU Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033. | 
| 16 | LUO X F, YANG C H, CHANG J K. Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets[J]. Journal of Materials Chemistry A, 2015, 3(33): 17282-17289. | 
| 17 | OLSSON E, COTTOM J, AU H, et al. Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials [J]. Advanced Functional Materials, 2020, 30(17):1908209-1908218. | 
| 18 | DING H B, WANG J, ZHOU J, et al. Building electrode skins for ultra-stable potassium metal batteries[J]. Nature Communications, 2023, 14(1): 2305. | 
| 19 | ZHENG H, PARK D Y, KIM M S. Preparation and characterization of anode materials using expanded graphite/pitch composite for high-power Li-ion secondary batteries[J]. Research on Chemical Intermediates, 2014, 40(7): 2501-2507. | 
| 20 | ZHOU X S, LIU X, XU Y, et al. An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(41): 23527-23534. | 
| 21 | XU Y N, WEI Q L, XU C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode[J]. Advanced Energy Materials, 2016, 6(14): 1600389. | 
| 22 | WANG Z H, SELBACH S M, GRANDE T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite[J]. RSC Advances, 2014, 4(8): 4069-4079. | 
| 23 | LI Z Q, ZHANG L Y, GE X L, et al. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J]. Nano Energy, 2017, 32: 494-502. | 
| 24 | BU Q J, ZHAO S, LIU X W, et al. Facile electro-exfoliation of binder-free expanded graphite paper electrode at low-potential in alkaline environment for all-solid-state capacitor[J]. Journal of Energy Storage, 2022, 50: 104254. | 
| 25 | DIMIEV A, KOSYNKIN D V, ALEMANY L B, et al. Pristine graphite oxide[J]. Journal of the American Chemical Society, 2012, 134(5): 2815-2822. | 
| 26 | AFANASOV I M, SAVCHENKO D V, IONOV S G, et al. Thermal conductivity and mechanical properties of expanded graphite[J]. Inorganic Materials, 2009, 45(5): 486-490. | 
| 27 | GAO W, ALEMANY L B, CI L J, et al. New insights into the structure and reduction of graphite oxide[J]. Nature Chemistry, 2009, 1(5): 403-408. | 
| 28 | ATALMIS G, SATTARKHANOV K, DEMIRALP M, et al. The effect of expanded natural graphite added at different ratios of metal hydride on hydrogen storage amount and reaction kinetics[J]. International Journal of Hydrogen Energy, 2024, 51: 256-265. | 
| 29 | BU Q J, CAO X Y, LI S, et al. Synchronous synthesis of electro-exfoliated/oxidized binder-free expanded graphite paper at low potential for solid-state capacitor[J]. Journal of Energy Storage, 2022, 52: 104994. | 
| 30 | DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448: 457-460. | 
| 31 | DARABUT A M, LOBKO Y, YAKOVLEV Y, et al. Influence of thermal treatment on the structure and electrical conductivity of thermally expanded graphite[J]. Advanced Powder Technology, 2022, 33(12): 103884. | 
| 32 | DREYER D R, JIA H P, TODD A D, et al. Graphite oxide: A selective and highly efficient oxidant of thiols and sulfides[J]. Organic & Biomolecular Chemistry, 2011, 9(21): 7292-7295. | 
| 33 | EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. | 
| 34 | ELBIDI M, RESUL M F M G, RASHID S A, et al. Preparation of eco-friendly mesoporous expanded graphite for oil sorption[J]. Journal of Porous Materials, 2023, 30(4): 1359-1368. | 
| 35 | PEI S F, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3210-3228. | 
| 36 | DAN R Q, CHEN W M, XIAO Z W, et al. N-doped biomass carbon/reduced graphene oxide as a high-performance anode for sodium-ion batteries[J]. Energy & Fuels, 2020, 34(3): 3923-3930. | 
| 37 | GU E, LIU S H, ZHANG Z Z, et al. An efficient sodium-ion battery consisting of reduced graphene oxide bonded Na3V2(PO4)3 in a composite carbon network [J]. Journal of Alloys and Compounds, 2018, 767: 131-40. | 
| 38 | 杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, 23(3): 193-200. | 
| YANG Y G, CHEN C M, WEN Y F, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, 23(3): 193-200. | |
| 39 | 曹宇臣, 郭鸣明. 石墨烯材料及其应用[J]. 石油化工, 2016, 45(10): 1149-1159. | 
| CAO Y C, GUO M M. Graphene materials and its applications[J]. Petrochemical Technology, 2016, 45(10): 1149-1159. | |
| 40 | KUMAR N A, GADDAM R R, VARANASI S R, et al. Sodium ion storage in reduced graphene oxide[J]. Electrochimica Acta, 2016, 214: 319-325. | 
| 41 | ZHANG Y B, QIN J D, LOWE S E, et al. Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes[J]. Carbon, 2021, 177: 71-78. | 
| 42 | LIU T, ZHANG R J, ZHANG X S, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119: 544-547. | 
| 43 | CHO J S, LEE J K, KANG Y C. Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries[J]. Scientific Reports, 2016, 6: 23699. | 
| 44 | DAVID L, SINGH G. Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on Li and Na cyclability[J]. Journal of Physical Chemistry C, 2014, 118(49): 28401-28408. | 
| 45 | YAN D, XU X T, LU T, et al. Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries[J]. Journal of Power Sources, 2016, 316: 132-138. | 
| 46 | XING Z Y, QI Y T, JIAN Z L, et al. Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4343-4351. | 
| 47 | KUMAR N A, GADDAM R R, SURESH M, et al. Porphyrin-graphene oxide frameworks for long life sodium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 13204-13211. | 
| 48 | ZHAO H M, PANG X Y, ZHAI Z X. Preparation and antiflame performance of expandable graphite modified with sodium hexametaphosphate[J]. Journal of Polymers, 2015, 2015: 821297. | 
| 49 | OKAMOTO Y. Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds[J]. The Journal of Physical Chemistry C, 2014, 118(1): 16-19. | 
| 50 | LIU Y Y, MERINOV B V, GODDARD W A 3rd. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739. | 
| 51 | HU Y J, WU M M, CHI F Y, et al. Ultralow-resistance electrochemical capacitor for integrable line filtering[J]. Nature, 2023, 624(7990): 74-79. | 
| 52 | WAN J Y, SHEN F, LUO W, et al. In situ transmission electron microscopy observation of sodiation-desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode[J]. Chemistry of Materials, 2016, 28(18): 6528-6535. | 
| 53 | WANG Y X, CHOU S L, LIU H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202-208. | 
| 54 | BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. | 
| 55 | XIAO N, TAN H T, ZHU J X, et al. High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9656-9662. | 
| 56 | PARAKNOWITSCH J P, THOMAS A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science, 2013, 6(10): 2839-2855. | 
| 57 | YAKOVLEV A V, FINAENOV A I, ZABUD'KOV S L, et al. Thermally expanded graphite: Synthesis, properties, and prospects for use[J]. Russian Journal of Applied Chemistry, 2006, 79(11): 1741-1751. | 
| 58 | HUMMERS W S Jr, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. | 
| 59 | ALAM S N, SHARMA N, KUMAR L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)[J]. Graphene, 2017, 6(1): 1-18. | 
| 60 | POH H L, ŠANĚK F, AMBROSI A, et al. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties[J]. Nanoscale, 2012, 4(11): 3515-3522. | 
| 61 | BOURLINOS A B, GOURNIS D, PETRIDIS D, et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids[J]. Langmuir, 2003, 19(15): 6050-6055. | 
| 62 | GENGLER R Y N, BADALI D S, ZHANG D F, et al. Revealing the ultrafast process behind the photoreduction of graphene oxide[J]. Nature Communications, 2013, 4: 2560. | 
| 63 | HONG Y Z, WANG Z Y, JIN X B. Sulfuric acid intercalated graphite oxide for graphene preparation[J]. Scientific Reports, 2013, 3: 3439. | 
| 64 | ZHAO J, ZHANG Y Z, ZHANG F, et al. Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries[J]. Advanced Energy Materials, 2019, 9(7): 1803215. | 
| 65 | RAMOS A, CAMEÁN I, CUESTA N, et al. Expanded graphitic materials prepared from micro-and nanometric precursors as anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 187: 496-507. | 
| 66 | WANG Y, WANG C Y, WANG Y J, et al. Boric acid assisted reduction of graphene oxide: A promising material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(29): 18860-18866. | 
| 67 | SUN Y G, TANG J, ZHANG K, et al. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries[J]. Nanoscale, 2017, 9(7): 2585-2595. | 
| 68 | ISLAM M S, FAISAL S N, TONG L Y, et al. N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries[J]. Journal of Energy Storage, 2021, 37: 102453. | 
| 69 | WENG Z, SU Y, WANG D W, et al. Graphene–cellulose paper flexible supercapacitors[J]. Advanced Energy Materials, 2011, 1(5): 917-922. | 
| 70 | XIE Q X, BAO R R, XIE C, et al. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density[J]. Journal of Power Sources, 2016, 317: 133-142. | 
| 71 | QIN W, LI D S, ZHANG X J, et al. ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries[J]. Electrochimica Acta, 2016, 191: 435-443. | 
| 72 | SADEGHI M M, HUANG Y J, LIAN C, et al. Tunable electron-flexural phonon interaction in graphene heterostructures[J]. Nature, 2023, 617(7960): 282-286. | 
| 73 | LEE K H, OH J, SON J G, et al. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6361-6368. | 
| 74 | QU B H, MA C Z, JI G, et al. Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26(23): 3854-3859. | 
| 75 | WANG H B, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794. | 
| 76 | GOPALAKRISHNAN K, GOVINDARAJ A, RAO C N R. Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis[J]. Journal of Materials Chemistry A, 2013, 1(26): 7563-7565. | 
| 77 | ZHANG J, LI C Q, PENG Z K, et al. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage[J]. Scientific Reports, 2017, 7(1): 4886. | 
| 78 | KIM H, HONG J, PARK Y U, et al. Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. | 
| 79 | LI W, ZHOU M, LI H M, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science, 2015, 8(10): 2916-2921. | 
| 80 | HONG Z S, ZHEN Y C, RUAN Y R, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials, 2018: e1802035. | 
| 81 | QIE L, CHEN W M, XIONG X Q, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science, 2015, 2(12): 1500195. | 
| 82 | QUAN B, JIN A H, YU S H, et al. Solvothermal-derived S-doped graphene as an anode material for sodium-ion batteries[J]. Advanced Science, 2018, 5(5): 1700880-1700887. | 
| 83 | LING C, MIZUNO F. Boron-doped graphene as a promising anode for Na-ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(22): 10419-10424. | 
| [1] | 张亮, 周雄, 滕久康, 杨文静, 黎学明. 氟化科琴黑/石墨烯复合材料及电化学性能研究[J]. 储能科学与技术, 2025, 14(5): 1841-1849. | 
| [2] | 刘德帅, 朱慧琴, 孙睿浩, 李蒙, 巩文豪, 李晓辉, 钱伟伟. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. | 
| [3] | 李昱, 李丹丹, 谢飞, 唐彬, 容晓晖, 梁沁沁, 胡勇胜. 钠离子电池正极预钠化技术进展[J]. 储能科学与技术, 2025, 14(5): 1748-1757. | 
| [4] | 陈英健, 吴尚, 曹元成, 杜宝帅, 王振兴, 欧阳钟文, 汤舜. 磁场分选在废旧锂电池正负极材料回收中的应用[J]. 储能科学与技术, 2025, 14(5): 1918-1927. | 
| [5] | 唐从庆, 蔡京升. 补钠技术在钠离子电池中的应用进展[J]. 储能科学与技术, 2025, 14(5): 1884-1899. | 
| [6] | 孙蔷馥, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.2.1—2025.3.31)[J]. 储能科学与技术, 2025, 14(5): 1727-1747. | 
| [7] | 单福星, 霍海波, 张铮, 渐彬彬, 陈军. 钠离子电池的阶梯充电策略及优化[J]. 储能科学与技术, 2025, 14(4): 1668-1678. | 
| [8] | 闻有为, 滕安琪, 李勇琦, 田佳敏, 丁康杰, 段强领, 王青松. 不同放电倍率下钠离子电池的电性能与产热行为研究[J]. 储能科学与技术, 2025, 14(4): 1687-1697. | 
| [9] | 李勇琦, 李志远, 闻有为, 王成东, 段强领, 王青松. 大容量钠离子电池热失控特性实验研究[J]. 储能科学与技术, 2025, 14(4): 1657-1667. | 
| [10] | 王蕾, 刘少冕, 范凤兰, 杨子腾. 速生木基钠离子电池硬碳负极构效关系[J]. 储能科学与技术, 2025, 14(3): 1107-1114. | 
| [11] | 陈钊, 梁沁沁, 李玉婷, 谢飞, 唐彬, 李建新, 陆雅翔, 陈爱兵, 胡勇胜. 钠离子电池锡基合金类负极材料研究进展[J]. 储能科学与技术, 2025, 14(3): 883-897. | 
| [12] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. | 
| [13] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024-12-01—2025-01-31)[J]. 储能科学与技术, 2025, 14(3): 1310-1330. | 
| [14] | 潘美玲, 孙楠楠, 赵志超. 二维VC2作为钠离子电池负极材料的理论研究[J]. 储能科学与技术, 2025, 14(2): 497-504. | 
| [15] | 王阳峰, 侯佳傲, 朱紫宸, 所聪, 侯栓弟. 钠离子电池硬碳闭孔结构研究进展[J]. 储能科学与技术, 2025, 14(2): 555-569. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
