• XXXX •
张新新1, 岑官骏1, 乔荣涵1, 朱璟1, 郝峻丰1, 孙蔷馥1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2
收稿日期:
2025-02-22
修回日期:
2025-02-22
出版日期:
2025-02-26
Xinxin ZHANG1, Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Qiangfu SUN1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2
Received:
2025-02-22
Revised:
2025-02-22
Online:
2025-02-26
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了 Web of Science 从 2024年12月 1日至 2025年1月 31日上线的锂电池研究论文,共有 5413 篇。首选采用BERTopic主题模型对其摘要文本进行分析,构建锂电池论文的研究主题图,再选择其中100 篇加以评论。正极材料的研究集中于高镍层状材料和尖晶石结构LiNi0.5Mn1.5O4材料的掺杂改性、表面包覆、结构设计等。负极材料的研究重点包括硅基负极的结构设计和性能提升、金属锂负极的界面和体相结构设计。固态电解质的研究包括对聚合物、硫化物和卤化物及其复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。对固态电池,正极材料的体相改性、表面包覆和合成方法、锂金属负极的界面构筑和三维结构设计、无负极集流体的界面修饰有多篇文献报道。此外,锂硫电池和锂空电池也备受关注。电极中的锂离子输运和失效机制、锂沉积形貌和SEI结构演变、全电池热失控分析,电解质对CEI组分影响的理论模拟以及优化制造工艺的论文也有多篇。
中图分类号:
张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.12.1—2025.1.31)[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0155.
Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2024 to Jan. 31, 2025)[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0155.
1 | BERGSCHNEIDER M, KONG F, CONLIN P, et al. Mechanical degradation by anion redox in LiNiO2 countered via pillaring[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202403837. |
2 | NUNES B N, KARGER L, ZHANG R, et al. Enhanced cycling performance of the LiNiO2 cathode in Li-ion batteries enabled by nb-based surface coating[J]. Chemsuschem, 2024, doi: 10.1002/cssc.202402202. |
3 | LIAO H, CAI M, MA W, et al. Carbonated beverage chemistry for high-voltage battery cathodes[J]. Advanced Materials, 2024, doi 10.1002/adma.202402739. |
4 | AN L, SWALLOW J E N, CONG P, et al. Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes[J]. Energy & Environmental Science, 2024, 17(21): 8379-8391. |
5 | CAI X, YAN P, XIE T, et al. Pinning the surface layered oxide structure in high temperature calcination using conformal atomic layer deposition coating for fast charging cathode[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202423888. |
6 | ZHANG Y, YAO N, TANG X, et al. Upcycling of high-rate Ni-rich cathodes through intrinsic structural features[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202402918. |
7 | LIN L, ZHANG L, FU Z, et al. Unraveling mechanism for microstructure engineering toward high-capacity nickel-rich cathode materials[J]. Advanced Materials, 2024, doi: 10.1002/adma.202406175. |
8 | WANG H, DONG J, WANG M, et al. Synergistic surface restructuring and cation mixing via ultrafast joule heating enhancing ultrahigh-nickel cathodes for advanced lithium-ion batteries[J]. Journal of Energy Chemistry, 2025, 103: 371-382. |
9 | WANG S, LIANG K, ZHAO H, et al. Electronic structure formed by Y2O3-doping in lithium position assists improvement of charging-voltage for high-nickel cathodes[J]. Nature Communications, 2025, doi: 10.1038/s41467-024-52768-7. |
10 | JIN W, KIM Y, JANG H, et al. Identifying the nanostructure of residual Li in high-Ni cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2024, doi: 10.1039/d4ta07384c. |
11 | CHOI S, FENG W, LIU Z, et al. A novel morphology of high voltage LiMn1.5Ni0.5O4 cathode material with niobium-doping[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.153447. |
12 | WANG W, LI X, CHEN X, et al. Aqueous binder with self-emulsifying characteristics for practical Si/C anode in lithium-ion batteries[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2025, doi: 10.1002/chem.202403924: e202403924-e202403924. |
13 | JEONG H-T and KIM W J. Deformation mechanism maps of pure lithium: Their application in determining stack pressure for all-solid-state lithium-ion batteries[J]. Acs Energy Letters, 2024, 9(7): 3237-3251. |
14 | CHEN H, ZHAO Y, ZHANG X, et al. Synthesis of monocrystalline lithium for high-critical-current-density solid-state batteries[J]. Nature Synthesis, 2025, doi: 10.1038/s44160-024-00712-4. |
15 | BECKER J, FUCHS T, ORTMANN T, et al. Microstructure of lithium metal electrodeposited at the steel|Li6PS5Cl interface in "anode-free" solid-state batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202404975. |
16 | MA S, ZHAO J, XIAO H, et al. Modulating the inner helmholtz plane towards stable solid electrolyte interphase by anion-π interactions for high-performance anode-free lithium metal batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202412955. |
17 | WANG X, LI S, WU F, et al. Hubbard gap closure-induced dual-redox Li-storage mechanism as the origin of anomalously high capacity and fast ion diffusivity in MOFs-like polyoxometalates[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202416735. |
18 | JAGER B M, KORTEKAAS L, TEN ELSHOF J E, et al. Mixed-phase enabled high-rate copper niobate anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2025, doi: 10.1039/d4ta07548j. |
19 | KIM S, LEE M J, KWON S H, et al. Designing isocyanate-containing elastomeric electrolytes for antioxidative interphases in 4.7 V solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202403846. |
20 | HUANG J, SHEN Z, LI J, et al. Molecular-level designed gel polymer electrolyte with ultrahigh lithium transference number for high-performance lithium metal batteries[J]. Chemical Engineering Journal, 2025, 504. |
21 | FENG G, MA Q, LUO D, et al. Designing cooperative ion transport pathway in ultra-thin solid-state electrolytes toward practical lithium metal batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1016/j.cej.2024.158671. |
22 | NAKAMURA K, SUZUKI K, UTSUNO F, et al. Operando Li-ion distribution measurement of all-solid-state batteries by compton-scattered X rays[J]. Applied Physics Letters, 2024, doi: 10.1063/5.0238369. |
23 | ZHAO P-C, WANG Y, HUANG Q-S, et al. Metal-organic coordination enhanced metallopolymer electrolytes for wide-temperature solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202416897. |
24 | LV Q, LI C, LIU Y, et al. In-situ polymerized high-voltage solid-state lithium metal batteries with dual-reinforced stable interfaces[J]. Acs Nano, 2024, 18(34): 23253-23264. |
25 | WEI Y, WANG H, LIN X, et al. Moderate solvation structures of lithium ions for high-voltage lithium metal batteries at-40 °C[J]. Energy & Environmental Science, 2025, 18(2): 786-798. |
26 | HOU J, SUN W, YUAN Q, et al. Multiscale engineered bionic solid-state electrolytes breaking the stiffness-damping trade-off[J]. Angewandte Chemie (International ed. in English), 2025, doi: 10.1002/anie.202421427: e202421427-e202421427. |
27 | WANG X, ZHAO Z, LIU X, et al. Bridging links between solid electrolytes and electrodes: Boosting the electrochemical performance of flame-retardant solid electrolytes with vapor-deposited carbon and gold-sputtered nanolayers[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.157741. |
28 | FENG J, WANG J, GU Q, et al. 1 μm-thick robust gel polymer electrolyte with excellent interfacial stability for high-performance Li metal batteries[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202412287. |
29 | LI W, LI M, WANG S, et al. Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nature Nanotechnology, 2024, doi: 10.1038/s41565-024-01813-z. |
30 | HONG B, GAO L, LI C, et al. All-solid-state batteries designed for operation under extreme cold conditions[J]. Nature Communications, 2025, doi: 10.1038/s41467-024-55154-5. |
31 | LIU Y, SU H, ZHONG Y, et al. Inhibiting dendrites by uniformizing microstructure of superionic lithium argyrodites for all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202400783. |
32 | YUAN H, LIN W, TIAN C, et al. In-situ coating strategy to synthesize ultra-soft sulfide solid-state electrolytes for dendrite-free lithium metal batteries[J]. Nano Energy, 2024, doi: 10.1016/j.nanoen.2024.109835. |
33 | LIU M, HONG J J, SEBTI E, et al. Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air[J]. Nature Communications, 2025, doi: 10.1038/s41467-024-55634-8. |
34 | POUDEL T P, TRUONG E, OYEKUNLE I P, et al. Sliceable, moldable, and highly conductive electrolytes for all-solid-state batteries[J]. Acs Energy Letters, 2024, 10(1): 40-47. |
35 | SHEN L, LI J-L, KONG W-J, et al. Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202408571. |
36 | ZHANG B, ZHOU Y, YU X, et al. Enhancing Li-ion diffusivity of Li1.3Al0.3Ti1.7(PO4)3 through liquid-electrolytes-induced secondary crystallization[J]. Energy Storage Materials, 2024, doi: 10.1016/j.ensm.2024.103748. |
37 | NAM S, SEONG H, KIM Y, et al. All fluorine-free lithium-ion batteries with high-rate capability[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.154790. |
38 | WANG L, YU F-D, QUE L-F, et al. 12-Ah-level Li-ion pouch cells enabling fast charging at temperatures between-20 and 50 °C[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202408422. |
39 | FORERO-SABOYA J, MOISEEV I A, VLARA M-L, et al. A hydridoaluminate additive producing a protective coating on Ni-rich cathode materials in lithium-ion batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202402051. |
40 | XIA D, TAO L, HOU D, et al. A green, fire-retarding ether solvent for sustainable high-voltage Li-ion batteries at standard salt concentration[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202400773. |
41 | CUI Z, LIU C and MANTHIRAM A. Enabling stable operation of lithium-ion batteries under fast-operating conditions by tuning the electrolyte chemistry[J]. Advanced Materials, 2024, doi: 10.1002/adma.202409272. |
42 | KIM S, PARK S, KIM M, et al. Improving fast-charging performance of lithium-ion batteries through electrode-electrolyte interfacial engineering[J]. Advanced Science, 2024, doi: 10.1002/advs.202411466. |
43 | LI Y, WEN B, LI N, et al. Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202414636. |
44 | KHOTIMAH C, YUWONO R A, WANG F-M, et al. Investigation of space group effects of high-voltage spinel LiNi0.5Mn1.5O4: Unveiling the influences of fluorinate benzimidazole salt additive[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.152988. |
45 | CHENG J, HUANG Z, LU A, et al. Synergistic functional additives on cycling performance of silicon-carbon composite anode in pouch cells[J]. Journal of Materiomics, 2025, doi: 10.1016/j.jmat.2024.100941. |
46 | HOU J, SHI Q, FENG X, et al. Temperature-inert interface enables safe and practical energy-dense LiNi0.91Co0.07Mn0.02O2 pouch cells[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202402638. |
47 | WANG Y, LIU J, JI H, et al. Optimizing Si-O conjugation to enhance interfacial kinetics for low-temperature rechargeable lithium-ion batteries[J]. Advanced Materials, 2024, doi: 10.1002/adma.202412155. |
48 | HOU W-H, OU Y, ZENG T, et al. Rational molecular design of electrolyte additive endows stable cycling performance of cobalt-free 5 V-class lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(21): 8325-8336. |
49 | LI M, LI S, YAN D, et al. Electrolyte design weakens lithium-ion solvation for a fast-charging and long-cycling Si anode[J]. Chemical Science, 2025, doi: 10.1039/d4sc08125k. |
50 | DAI Z, SUN X, CHEN R, et al. Chemical competing diffusion for practical all-solid-state batteries[J]. Journal of the American Chemical Society, 2024, doi: 10.1021/jacs.4c11645. |
51 | GAO C, XU X, BAI T, et al. Deciphering the interfacial Li-ion migration kinetics of Ni-rich cathodes in sulfide-based all-solid-state batteries[J]. ACS applied materials & interfaces, 2024, doi: 10.1021/acsami.4c17233. |
52 | JANGID M K, CHO T H, MA T, et al. Eliminating chemo-mechanical degradation of lithium solid-state battery cathodes during > 4.5 V cycling using amorphous Nb2O5 coatings[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54331-w. |
53 | HONG S-B, JANG Y-R, KIM H, et al. Wet-processable binder in composite cathode for high energy density all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202400802. |
54 | SHIN H-J, KIM J-T, HAN D, et al. 2D graphene-like carbon coated solid electrolyte for reducing inhomogeneous reactions of all-solid-state batteries[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202403247. |
55 | CHEN J, HU C, LIU R, et al. Long cycle life all-solid-state batteries enabled by medium nanosized catholytes[J]. Journal of Physical Chemistry Letters, 2025, doi: 10.1021/acs.jpclett.4c03539. |
56 | LIU Z, LIU J, ZHAO S, et al. Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries[J]. Nature Sustainability, 2024, doi: 10.1038/s41893-024-01431-6. |
57 | ZHOU X, JIANG M, DUAN Y, et al. Multi-electron transfer halide cathode materials based on intercalation-conversion reaction towards all-solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202416635. |
58 | LEE W, LEE J, YU T, et al. Advanced parametrization for the production of high-energy solid-state lithium pouch cells containing polymer electrolytes[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-50075-9. |
59 | WU Z, DU L, YANG T, et al. Lithium difluorophosphate additive engineering enabling stable cathodic interface for high-performance sulfide-based all-solid-state lithium battery[J]. Energy & Environmental Materials, 2025, doi: 10.1002/eem2.12871. |
60 | LI L, HU Y, LIU J, et al. Gradual release fluorine from additive to construct a stable LiF-rich cathode electrolyte interphase for high-voltage all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2025, doi: 10.1016/j.cej.2024.158439. |
61 | KONG Z-X, XIONG Z, WU J-F, et al. Suppressing ionic-to-electronic conduction transition on cathode interface enables 4.4 V poly(ethylene oxide)-based all-solid-state batteries[J]. Acs Energy Letters, 2024, 10(1): 287-295. |
62 | HU Z, GENG C, SHI J, et al. In situ welding ionic conductive breakpoints for highly reversible all-solid-state lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2024, 146(49): 34023-34032. |
63 | CAO Z, YAO X, PARK S, et al. Enhancing cathode composites with conductive alignment synergy for solid-state batteries[J]. Science Advances, 2025, doi: 10.1126/sciadv.adr4292. |
64 | KAELI E, JIANG Z, YANG X, et al. Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries[J]. Energy & Environmental Science, 2024, doi: 10.1039/d4ee04908j. |
65 | ZHAI P, AHMAD N, QU S, et al. A lithiophilic-lithiophobic gradient solid electrolyte interface toward a highly stable solid-state polymer lithium metal batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202316561. |
66 | ZHANG W, WANG Z, WAN H, et al. Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction[J]. Nature materials, 2025, doi: 10.1038/s41563-024-02064-y. |
67 | OH J, KWON D, CHOI S H, et al. All-solid-state batteries with extremely low N/P ratio operating at low stack pressure[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202404817. |
68 | WANG Y, RAJ V, NAIK K G, et al. Control of two solid electrolyte interphases at the negative electrode of an anode-free all solid-state battery based on argyrodite electrolyte[J]. Advanced Materials, 2025, doi: 10.1002/adma.202410948. |
69 | CAI J, ZHANG X, GOU H, et al. Interface engineering of aluminum foil anode for solid-state lithium-ion batteries under extreme conditions[J]. Acs Energy Letters, 2024, 10(1): 439-449. |
70 | CHEN Y, GAO X, ZHEN Z, et al. The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(23): 9288-9302. |
71 | WANG D, GWALANI B, WIERZBICKI D, et al. Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li-S batteries[J]. Nature Materials, 2025, doi: 10.1038/s41563-024-02057-x. |
72 | SONG H, MUENCH K, LIU X, et al. All-solid-state Li-S batteries with fast solid-solid sulfur reaction[J]. Nature, 2025, doi: 10.1038/s41586-024-08298-9. |
73 | WOOLLEY H M, LANGE M, NAZMUTDINOVA E, et al. Toward high-capacity Li-S solid-state batteries: The role of partial ionic transport in the catholyte[J]. Acs Energy Letters, 2024, 9(7): 3547-3556. |
74 | LUO Z-H, ZHENG M, ZHOU M-X, et al. 2D nanochannel interlayer realizing high-performance lithium-sulfur batteries[J]. Advanced materials (Deerfield Beach, Fla.), 2025, doi: 10.1002/adma.202417321: e2417321-e2417321. |
75 | HE Y, XIONG D, LUO Y, et al. Phase reconstruction-assisted electron-Li+ reservoirs enable high-performance Li-S battery operation across wide temperature range[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202410899. |
76 | ZHANG Z, XIAO X, YAN A, et al. Breaking the capacity bottleneck of lithium-oxygen batteries through reconceptualizing transport and nucleation kinetics[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54366-z. |
77 | SONG I T, KANG J, KOH J, et al. Thermal runaway prevention through scalable fabrication of safety reinforced layer in practical Li-ion batteries[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-52766-9. |
78 | HONG L, ZHANG Y, MEI P, et al. Temperature-responsive formation cycling enabling LiF-rich cathode-electrolyte interphase[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202409069. |
79 | FUCHS T, ORTMANN T, BECKER J, et al. Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction[J]. Nature materials, 2024, doi: 10.1038/s41563-024-02006-8. |
80 | WASYLOWSKI D, DITLER H, SONNET M, et al. Operando visualisation of lithium plating by ultrasound imaging of battery cells[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54319-6. |
81 | VACIK J, CECCIO G and TOMANDL I. Neutron depth profiling - a method for direct visualization of Li-ion distribution and migration in all-solid-state Li-ion batteries [J]. Radiation Effects and Defects in Solids, 2024, 179(11-12): 1564-1568. |
82 | YUN H, LEE E, HAN J, et al. Voltage noise failure induced by Li dendritic micro-penetration in all-solid-state Li-metal battery with composite solid electrolyte[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202404044. |
83 | CHEN B, XU K, TANG L, et al. In operando visualization of polymerized ionic liquid electrolyte migration in solid-state lithium batteries[J]. Acs Energy Letters, 2024, 10(1): 305-312. |
84 | MAITY A, SVIRINOVSKY-ARBELI A, BUGANIM Y, et al. Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54315-w. |
85 | YU Z, GAN C, MIJAILOVIC A S, et al. Lithium dendrite deflection at mixed ionic-electronic conducting interlayers in solid electrolytes[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202403179. |
86 | ZHANG X, MAO S, HAN X, et al. Online lithium plating detection based on charging internal resistance for lithium-ion batteries[J]. Journal of Energy Storage, 2025, doi: 10.1016/j.est.2024.115140. |
87 | HAN X, XU R, LI Y, et al. Early-stage latent thermal failure of single-crystal Ni-rich layered cathode[J]. Journal of Energy Chemistry, 2024, 96: 578-587. |
88 | BAI X, ZHENG C, ZHANG H, et al. How do high-voltage cathode and PEO electrolyte get along well? Eis analysis mechanism & potentiometric control strategy[J]. Journal of Energy Chemistry, 2024, 96: 424-436. |
89 | YANAGIHARA S, HUEBNER J, HUANG Z, et al. Compatibility of halide electrolytes in solid-state Li-S battery cathodes[J]. Chemistry of Materials, 2024, doi: 10.1021/acs.chemmater.4c02159. |
90 | PULS S, NAZMUTDINOVA E, KALYK F, et al. Benchmarking the reproducibility of all-solid-state battery cell performance[J]. Nature Energy, 2024, 9(10): 1310-1320. |
91 | CHEN C, LIU B, MITTONE A, et al. Probing microstructure evolution of Si/C anode for Li-ion batteries via synchrotron transmission X-ray tomographic microscopy[J]. Journal of Power Sources, 2024, doi: 10.1016/j.jpowsour.2024.235378. |
92 | SEO J-Y, KIM S, KIM J-H, et al. Mechanical shutdown of battery separators: Silicon anode failure[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54313-y. |
93 | HUO H, BAI Y, BENZ S L, et al. Decoupling the effects of interface chemical degradation and mechanical cracking in solid-state batteries with silicon electrode[J]. Advanced materials (Deerfield Beach, Fla.), 2024, doi: 10.1002/adma.202415006: e2415006-e2415006. |
94 | LI M, XUE D, RONG Z, et al. Stack pressure enhanced size threshold of Si anode fracture in all-solid-state batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202415696. |
95 | LEAU C, WANG Y, GERVILLIE-MOURAVIEFF C, et al. Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression[J]. Nature Communications, 2025, 16(1): 757-757. |
96 | GROHER C, CUPID D M, JIANG Q, et al. Investigating the multifunctional role of tris(trimethylsilyl)phosphite as an electrolyte additive via operando gas chromatography/mass spectrometry and X-ray photoelectron spectroscopy[J]. Advanced Energy and Sustainability Research, 2025, doi: 10.1002/aesr.202400297. |
97 | MAILOA J P, LI X and ZHANG S. 3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54453-1. |
98 | ZHU S, RAMSUNDAR B, ANNEVELINK E, et al. Differentiable modeling and optimization of non-aqueous Li-based battery electrolyte solutions using geometric deep learning[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-51653-7. |
99 | LEE J and HAN Y-K. Unveiling the mechanism of dense cathode-electrolyte interphase formation in lithium-ion batteries using cyclophosphamide additive[J]. Electrochimica Acta, 2025, doi: 10.1016/j.electacta.2024.145628. |
100 | CHEN J, FANG M, WU Q, et al. Insights into the atomic mechanism of lithium-ion diffusion in Li6PS5Cl via a machine learning potential[J]. Chemistry of Materials, 2025, doi: 10.1021/acs.chemmater.4c01152. |
[1] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[2] | 江训昌, 喻科霖, 杨大祥, 廖敏会, 周洋. 原位聚合制备PDOL基固态电解质及其在锂金属电池中的应用[J]. 储能科学与技术, 2025, 14(1): 1-12. |
[3] | 周洪, 俞海龙, 王丽平, 黄学杰. 基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J]. 储能科学与技术, 2025, 14(1): 406-416. |
[4] | 刘迎迎, 张孝远, 刘梦楠, 孙俊章, 张艳. 基于自适应最优组合核函数高斯过程回归的锂电池健康状态区间估计[J]. 储能科学与技术, 2025, 14(1): 346-357. |
[5] | 郝峻丰, 岑官骏, 乔荣涵, 朱璟, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.10.1—2024.11.30)[J]. 储能科学与技术, 2025, 14(1): 388-405. |
[6] | 陈星光, 沈逸凡, 邵裕新, 郑岳久, 孙涛, 来鑫, 沈凯, 韩雪冰. 面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究[J]. 储能科学与技术, 2024, 13(9): 2963-2971. |
[7] | 黎耀康, 杨海东, 徐康康, 蓝昭宇, 章润楠. 基于加权UMAP和改进BLS的锂电池温度预测[J]. 储能科学与技术, 2024, 13(9): 3006-3015. |
[8] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[9] | 刘莹, 孙丙香, 赵鑫泽, 张珺玮. 基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计[J]. 储能科学与技术, 2024, 13(9): 3030-3041. |
[10] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. |
[11] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.06.01—2024.07.31)[J]. 储能科学与技术, 2024, 13(9): 3226-3244. |
[12] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[13] | 杨凯悦, 谢欣兵, 杜晓钟. 基于离散元法的锂电池极片辊压过程探究[J]. 储能科学与技术, 2024, 13(8): 2570-2579. |
[14] | 陈峥, 杨博, 赵志刚, 申江卫, 肖仁鑫, 夏雪磊. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. |
[15] | 张结雨, 张顺, 李宁, 曾芳磊, 丁建宁. 阻燃凝胶聚合物电解质的制备及其性能研究[J]. 储能科学与技术, 2024, 13(8): 2529-2540. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||