储能科学与技术

• XXXX •    

锂电池百篇论文点评(2024.12.12025.1.31

张新新1, 岑官骏1, 乔荣涵1, 朱璟1, 郝峻丰1, 孙蔷馥1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2   

  1. 1.中国科学院物理研究所,北京 100190
    2.松山湖材料实验室,广东 东莞 523890
    3.中国科学院武汉文献情报中心,湖北省 武汉市 430071
  • 收稿日期:2025-02-22 修回日期:2025-02-22 出版日期:2025-02-26

Reviews of selected 100 recent papers for lithium batteriesDec. 1, 2024 to Jan. 31, 2025

Xinxin ZHANG1, Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Qiangfu SUN1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.Songshan Lake Materials Laboratory, Dongguan 523890, Guangdong, China
    3.National Science Library (Wuhan), Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • Received:2025-02-22 Revised:2025-02-22 Online:2025-02-26

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了 Web of Science 从 2024年12月 1日至 2025年1月 31日上线的锂电池研究论文,共有 5413 篇。首选采用BERTopic主题模型对其摘要文本进行分析,构建锂电池论文的研究主题图,再选择其中100 篇加以评论。正极材料的研究集中于高镍层状材料和尖晶石结构LiNi0.5Mn1.5O4材料的掺杂改性、表面包覆、结构设计等。负极材料的研究重点包括硅基负极的结构设计和性能提升、金属锂负极的界面和体相结构设计。固态电解质的研究包括对聚合物、硫化物和卤化物及其复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。对固态电池,正极材料的体相改性、表面包覆和合成方法、锂金属负极的界面构筑和三维结构设计、无负极集流体的界面修饰有多篇文献报道。此外,锂硫电池和锂空电池也备受关注。电极中的锂离子输运和失效机制、锂沉积形貌和SEI结构演变、全电池热失控分析,电解质对CEI组分影响的理论模拟以及优化制造工艺的论文也有多篇。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights a comprehensive overview of the latest research on lithium batteries. A total of 5413 online papers from December 1, 2024, to January 31, 2025, were examined through the Web of Science database. Firstly, the BERTopic topic model is used to analyze the abstract text and the research topic map of lithium battery papers was drawn. 100 papers were selected for highlighting in this review. The selected studies cover various aspects of lithium batteries. Cathode materials including Ni-rich layered oxides and LiNi0.5Mn1.5O4 are improved by doping, surface coating, and micro structural modifications. The cycling performances of Si-based anode are enhanced by structural design. Great efforts have been devoted to interfacial and bulk structure design of lithium metal anode. Studies on solid-state electrolytes focus on the structure design and performances in polymer, sulfide, and halide electrolytes, as well as their composite forms. In contrast, liquid electrolytes are improved through optimal solvent and lithium salt design for different battery applications and incorporating novel functional additives. For solid-state batteries, the modification, surface coating and synthesis methods of cathode, interface construction and three-dimensional structural design of lithium metal anode, as well as the interface modification of current collectors for anode-free batteries are widely investigated. The structural design of cathode and liquid electrolyte for lithium-sulfur battery are helpful to extend its cycling life. In addition, lithium-sulfur and lithium-oxygen batteries have also garnered significant attention. There are also a few papers on the ion transport and degradation mechanisms in electrodes, lithium deposition morphology and SEI structural evolution in electrolytes, the analysis of thermal runaway of full batteries, the theoretical simulation of the impact of solvents on the components of the CEI, as well as optimizing the manufacturing processes.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: