1 |
赵轩, 李美莹, 余强, 等. 电动汽车动力锂电池状态估计综述[J]. 中国公路学报, 2023, 36(6): 254-283. DOI: 10.19721/j.cnki.1001-7372.2023.06.021.
|
|
ZHAO X, LI M Y, YU Q, et al. State estimation of power lithium batteries for electric vehicles: A review[J]. China Journal of Highway and Transport, 2023, 36(6): 254-283. DOI: 10.19721/j.cnki.1001-7372.2023.06.021.
|
2 |
陈峥, 陈洋, 申江卫, 等. 基于优化支持向量回归算法的锂离子电池可用容量估计[J]. 储能科学与技术, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023.0387.
|
|
CHEN Z, CHEN Y, SHEN J W, et al. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023.0387.
|
3 |
舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128. DOI: 10.3901/JME.2021.14.118.
|
|
SHU X, LIU Y G, SHEN J W, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and box-cox transformation[J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128. DOI: 10.3901/JME.2021.14.118.
|
4 |
黄鹏超, 鄂加强. 基于双自适应卡尔曼滤波的锂电池状态估算[J]. 储能科学与技术, 2022, 11(2): 660-666. DOI: 10.19799/j.cnki.2095-4239.2021.0411.
|
|
HUANG P C, E J Q. State estimation of lithium-ion battery based on dual adaptive Kalman filter[J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. DOI: 10.19799/j.cnki.2095-4239.2021.0411.
|
5 |
袁照凯, 范秋华, 王冬青, 等. 基于MIAEKF的多温度下锂电池SOC估计[J]. 储能科学与技术, 2024, 13(2): 680-690. DOI:10.19799/j.cnki.2095-4239.2023.0533.
|
|
YUAN Z K, FAN Q H, WANG D Q, et al. State of charge estimation for lithium-ion batteries under multiple temperatures based on the MIAEK algorithm[J]. Energy Storage Science and Technology, 2024, 13(2): 680-690. DOI:10.19799/j.cnki.2095-4239.2023.0533.
|
6 |
SUN D M, YU X L, WANG C M, et al. State of charge estimation for lithium-ion battery based on an intelligent adaptive extended Kalman filter with improved noise estimator[J]. Energy, 2021, 214: 119025. DOI: 10.1016/j.energy.2020.119025.
|
7 |
李宁, 何复兴, 马文涛, 等. 基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计[J]. 电工技术学报, 2022, 37(17): 4528-4536. DOI: 10.19595/j.cnki.1000-6753.tces.211069.
|
|
LI N, HE F X, MA W T, et al. State-of-charge estimation of lithium-ion battery based on gated recurrent unit using empirical mode decomposition[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4528-4536. DOI: 10.19595/j.cnki.1000-6753.tces. 211069.
|
8 |
刘素贞, 袁路航, 张闯, 等. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5885. DOI: 10.19595/j.cnki.1000-6753.tces.211585.
|
|
LIU S Z, YUAN L H, ZHANG C, et al. State of charge estimation of LiFeO4 batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885. DOI: 10.19595/j.cnki.1000-6753.tces.211585.
|
9 |
LI X Y, SHU X, SHEN J W, et al. An on-board remaining useful life estimation algorithm for lithium-ion batteries of electric vehicles[J]. Energies, 2017, 10(5): 691. DOI: 10.3390/en10050691.
|
10 |
WANG Y H, HUANG H H, WANG H X. A new method for fast state of charge estimation using retired battery parameters[J]. Journal of Energy Storage, 2022, 55: 105621. DOI: 10.1016/j.est.2022.105621.
|
11 |
HONG J C, WANG Z P, CHEN W, et al. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles[J]. Journal of Energy Storage, 2020, 30: 101459. DOI: 10.1016/j.est.2020.101459.
|
12 |
MAO X J, SONG S J, DING F. Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with Levy flight[J]. Journal of Energy Storage, 2022, 49: 104139. DOI: 10.1016/j.est.2022.104139.
|
13 |
KANG L W, ZHAO X, MA J. A new neural network model for the state-of-charge estimation in the battery degradation process[J]. Applied Energy, 2014, 121: 20-27. DOI: 10.1016/j.apenergy.2014.01.066.
|
14 |
SHEN J W, XIONG J, SHU X, et al. State of charge estimation framework for lithium‐ion batteries based on square root cubature Kalman filter under wide operation temperature range[J]. International Journal of Energy Research, 2020, 45: 5586-5601. DOI: 10.1002/er.6186.
|
15 |
HOSSAIN M, HAQUE M E, ARIF M T. Online model parameter and state of charge estimation of Li-ion battery using unscented Kalman filter considering effects of temperatures and C-rates[J]. IEEE Transactions on Energy Conversion, 2022, 37(4): 2498-2511. DOI: 10.1109/TEC.2022.3178600.
|
16 |
杨帆, 和嘉睿, 陆鸣, 等. 基于BP-UKF算法的锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(2): 552-559. DOI: 10.19799/j.cnki.2095-4239.2022.0574.
|
|
YANG F, HE J R, LU M, et al. SOC estimation of lithium-ion batteries based on BP-UKF algorithm[J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. DOI: 10.19799/j.cnki.2095-4239.2022.0574.
|
17 |
熊然, 王顺利, 于春梅, 等. 基于Thevenin模型和改进扩展卡尔曼的特种机器人锂离子电池SOC估算方法[J]. 储能科学与技术, 2021, 10(2): 695-704. DOI: 10.19799/j.cnki.2095-4239.2020.0397.
|
|
XIONG R, WANG S L, YU C M, et al. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman[J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. DOI: 10.19799/j.cnki.2095-4239.2020.0397.
|
18 |
XU Y D, HU M H, ZHOU A J, et al. State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter[J]. Applied Mathematical Modelling, 2020, 77: 1255-1272. DOI: 10.1016/j.apm.2019.09.011.
|
19 |
郑涛, 张里, 侯杨成, 等. 基于自适应CKF的老化锂电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1193-1199. DOI: 10.19799/j.cnki.2095-4239.2020.0005.
|
|
ZHENG T, ZHANG L, HOU Y C, et al. SOC estimation of aging lithium battery based on adaptive CKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1193-1199. DOI: 10.19799/j.cnki.2095-4239.2020.0005.
|
20 |
李建林, 肖珩. 锂离子电池建模现状综述[J]. 储能科学与技术, 2022, 11(2): 697-703. DOI: 10.19799/j.cnki.2095-4239.2021.0450.
|
|
LI J L, XIAO H. Review on modeling of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(2): 697-703. DOI: 10.19799/j.cnki.2095-4239.2021.0450.
|
21 |
陈峥, 赵广达, 沈世全, 等. 基于迁移模型的老化锂离子电池SOC估计[J]. 储能科学与技术, 2021, 10(1): 326-334. DOI: 10.19799/j.cnki.2095-4239.2020.0288.
|
|
CHEN Z, ZHAO G D, SHEN S Q, et al. SOC estimation of aging lithium-ion battery based on a migration model[J]. Energy Storage Science and Technology, 2021, 10(1): 326-334. DOI: 10.19799/j.cnki.2095-4239.2020.0288.
|
22 |
林鹏, 刘涛, 金鹏, 等. 基于多新息辨识算法的锂离子电池等效电路模型参数辨识[J]. 储能科学与技术, 2023, 12(10): 3155-3169. DOI: 10.19799/j.cnki.2095-4239.2023.0358.
|
|
LIN P, LIU T, JIN P, et al. Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3155-3169. DOI: 10.19799/j.cnki.2095-4239.2023.0358.
|
23 |
朱奕楠, 吕桃林, 赵芝芸, 等. 基于并行卡尔曼滤波器的锂离子电池荷电状态估计[J]. 储能科学与技术, 2021, 10(6): 2352-2362. DOI: 10.19799/j.cnki.2095-4239.2021.0169.
|
|
ZHU Y N, LÜ T L, ZHAO Z Y, et al. State of charge estimation of lithium ion battery based on parallel Kalman filter[J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. DOI: 10.19799/j.cnki.2095-4239.2021.0169.
|
24 |
李晓涵, 孙磊, 马勇, 等. 基于Sage-Husa EKF算法的锂离子电池能量状态估计[J]. 储能科学与技术, 2022, 11(11): 3603-3612. DOI: 10.19799/j.cnki.2095-4239.2022.0277.
|
|
LI X H, SUN L, MA Y, et al. Energy state estimation of lithium-ion batteries based on Sage-Husa EKF algorithm[J]. Energy Storage Science and Technology, 2022, 11(11): 3603-3612. DOI: 10.19799/j.cnki.2095-4239.2022.0277.
|
25 |
CHEN Z, XIAO J P, SHU X, et al. Model-based adaptive joint estimation of the state of charge and capacity for lithium-ion batteries in their entire lifespan[J]. Energies, 2020, 13(6): 1410. DOI: 10.3390/en13061410.
|