储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1986-1994.doi: 10.19799/j.cnki.2095-4239.2024.0028

• 储能测试与评价 • 上一篇    下一篇

锂电池储能系统热失控气体生成及扩散规律研究

甄箫斐1,2(), 王贝贝1, 张小虎3, 孙一铭1, 曹文炅1, 董缇1   

  1. 1.兰州交通大学新能源与动力工程学院
    2.铁道车辆热工教育部重点实验室
    3.甘肃省消防救援 总队,甘肃 兰州 730070
  • 收稿日期:2024-01-09 修回日期:2024-02-15 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 甄箫斐 E-mail:zxf283386515@163.com
  • 作者简介:甄箫斐(1987—),男,博士,副教授,主要从事可再生能源方面的研究,E-mail:zxf283386515@163.com
  • 基金资助:
    国家自然科学基金(52206255);甘肃省自然科学基金(23JRRA917);甘肃省青年自然科学基金(23JRRA903);甘肃省住房和城乡建设厅科研项目(JK2023-49)

Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system

Xiaofei ZHEN1,2(), Beibei WANG1, Xiaohu ZHANG3, Yiming SUN1, Wenjiong CAO1, Ti DONG1   

  1. 1.School of New Energy and Power Engineering, Lanzhou Jiaotong University
    2.Key Laboratory of Railway Vehicle Thermal Engineering of MOE
    3.Gansu Provincial Fire and Rescue Corps, Lanzhou 730070, Gansu, China
  • Received:2024-01-09 Revised:2024-02-15 Online:2024-06-28 Published:2024-06-26
  • Contact: Xiaofei ZHEN E-mail:zxf283386515@163.com

摘要:

锂离子电池在热失控过程中将产生大量可燃性气体,是导致储能系统燃爆的主要风险。为研究系统尺度锂电池热失控可燃气体的生成及扩散规律,本文首先通过实验测试了某磷酸铁锂电池在不同热失控触发条件下的产气组成。基于实验结果,建立了预制舱储能系统热失控过程产气及扩散仿真模型,并分析了不同位置电池单体触发热失控后的可燃气体扩散规律。结果显示,在释放的气体中,H2占比约30%,且不受空气组分影响,更适合作为电池热失控的警告气体;经模拟发现,在电芯防爆阀打开3 s内,H2主要集中于电池模块区域,随着风冷循环,向电池模块外部间区域位置进行扩散,在120 s内将扩散至整个储能电池舱;基于此,给出了针对该储能舱最优的气体传感器及风道布置方案。本文研究结果能够为储能系统可燃气体监测点布局与排放路径设计提供参考。

关键词: 热失控, 产气特性, 锂电池储能系统, 数值仿真, 气体扩散

Abstract:

Lithium-ion batteries produce large amounts of flammable gases during thermal runaway, which is the main risk of explosion in energy storage systems(ESS). In order to investigate the generation and diffusion law of combustible gas in thermal runaway of ESS,we firstly tested the gas production composition of a lithium iron phosphate battery under different thermal runaway triggering conditions through experiments. Based on the experimental results, a simulation model of gas generation and diffusion in thermal runaway process of prefabricated cabin energy storage system was established, and the combustible gas diffusion law after triggering thermal runaway in different positions of battery cells was analyzed. The results show that H2 accounts for about 30% of the released gases and is not affected by air components, making it more suitable for use as a warning gas in the early stages of thermal runaway in batteries. It is found that within 3 s of the opening of the explosion-proof valve of the electric cell, H2 is mainly concentrated in the area of the battery module. With the air-cooling cycle, it spreads to the external inter-area position of the battery module, and will spread to the whole storage battery compartment within 120 s. Based on this, the optimal gas sensor and duct arrangement scheme for this energy storage module is given. The results of this paper can provide a reference for the layout of combustible gas monitoring points and the design of emission paths in energy storage systems..

Key words: thermal runaway, gas production characteristics, lithium battery storage system, numerical simulation, gas diffusion

中图分类号: