1 |
缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678.
|
|
MIAO P, YAO Z, JOHN L, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678.
|
2 |
中关村储能产业技术联盟. 全球储能市场跟踪报告2023.Q3[R]. 北京: 中关村储能产业技术联盟, 2023.
|
|
Zhongguancun Energy Storage Industry Technology Alliance. Energy storage industry research white paper 2023[R]. Beijing : Zhongguancun Energy Storage Industry Technology Alliance, 2023.
|
3 |
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
|
4 |
TIAN X L, YI Y K, FANG B R, et al. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries[J]. Chemistry of Materials, 2020, 32(23): 9821-9848.
|
5 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
6 |
KONG D P, LV H P, PING P, et al. A review of early warning methods of thermal runaway of lithium ion batteries[J]. Journal of Energy Storage, 2023, 64: 107073.
|
7 |
GUO Y, YANG D F, ZHANG Y, et al. Online estimation of SOH for lithium-ion battery based on SSA-elman neural network[J]. Protection and Control of Modern Power Systems, 2022, 7(3): 1-17.
|
8 |
WANG H M, WANG Y F, HU F, et al. Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery[J]. Applied Thermal Engineering, 2021, 194: 117053.
|
9 |
XIONG R, SUN W Z, YU Q Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855.
|
10 |
YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192.
|
11 |
WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730.
|
12 |
CHEN S C, WANG Z R, YAN W, et al. Investigation of impact pressure during thermal runaway of lithium ion battery in a semi-closed space[J]. Applied Thermal Engineering, 2020, 175: 115429.
|
13 |
SU T L, LYU N W, ZHAO Z X, et al. Safety warning of lithium-ion battery energy storage station via venting acoustic signal detection for grid application[J]. Journal of Energy Storage, 2021, 38: 102498.
|
14 |
KOCH S, BIRKE K, KUHN R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): 16.
|
15 |
GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186.
|
16 |
LAMMER M, KÖNIGSEDER A, HACKER V. Holistic methodology for characterisation of the thermally induced failure of commercially available 18650 lithium ion cells[J]. RSC Advances, 2017, 7(39): 24425-24429.
|
17 |
马彪, 林春景, 刘磊, 等. 锂离子电池热失控产气特性及其可燃极限[J]. 储能科学与技术, 2022, 11(5): 1592-1600.
|
|
MA B, LIN C J, LIU L, et al. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600.
|
18 |
KENNEDY R W, MARR K C, EZEKOYE O A. Gas release rates and properties from Lithium Cobalt Oxide lithium ion battery arrays[J]. Journal of Power Sources, 2021, 487: 229388.
|
19 |
王俊, 贾壮壮, 秦鹏, 等. 磷酸铁锂离子电池模组热失控气体扩散仿真[J]. 储能科学与技术, 2022, 11(1): 185-192.
|
|
WANG J, JIA Z Z, QIN P, et al. Simulation of thermal runaway gas diffusion in LiFePO4 battery module[J]. Energy Storage Science and Technology, 2022, 11(1): 185-192.
|
20 |
CAO W J, QIU Y S, PENG P, et al. A full-scale electrical-thermal-fluidic coupling model for li-ion battery energy storage systems[J]. Applied Thermal Engineering, 2021, 185: 116360.
|
21 |
TAO F B, ZHANG W J, GUO D L, et al. Thermofluidic modeling and temperature monitoring of Li-ion battery energy storage system[J]. Applied Thermal Engineering, 2020, 181: 116026.
|
22 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
23 |
HE H W, XIONG R, GUO H Q. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J]. Applied Energy, 2012, 89(1): 413-420.
|
24 |
GUO Y, QIU Y S, LEI B, et al. Modeling and analysis of liquid-cooling thermal management of an in-house developed 100kW/500kWh energy storage container consisting of lithium-ion batteries retired from electric vehicles[J]. Applied Thermal Engineering, 2023, 232: 121111.
|
25 |
ZHAO R C, LAI Z D, LI W H, et al. Development of a coupled model of heat generation and jet flow of lithium-ion batteries during thermal runaway[J]. Journal of Energy Storage, 2023, 63: 107048.
|