1 |
许家鸣, 胡健, 陈冬, 等. 塔式太阳能腔体吸热器光热耦合模型与试验[J]. 太阳能学报, 2023, 44(2): 15-21. DOI: 10.19912/j.0254-0096.tynxb.2021-1058.
|
|
XU J M, HU J, CHEN D, et al. Photo-thermal coupling model and experiment of solar tower cavity receiver[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 15-21. DOI: 10.19912/j.0254-0096.tynxb.2021-1058.
|
2 |
王晓娟, 杨帆, 王错, 等. 面向超声导波检测的管道腐蚀建模及仿真实现[J]. 仪器仪表学报, 2023, 44(5): 71-80. DOI: 10.19650/j.cnki.cjsi.J2210677.
|
|
WANG X J, YANG F, WANG C, et al. Pipeline corrosion modeling and simulation for guided-waves-based inspection[J]. Chinese Journal of Scientific Instrument, 2023, 44(5): 71-80. DOI: 10.19650/j.cnki.cjsi.J2210677.
|
3 |
马君旺. 两种复杂构件的超声导波缺陷监测关键技术研究与应用[D]. 杭州: 浙江大学, 2023. DOI: 10.27461/d.cnki.gzjdx. 2023.002469.
|
|
MA J W. Key technologies and applications for defect monitoring of two complex components using ultrasonic guided waves [D]. Hangzhou: Zhejiang University, 2023. DOI: 10.27461/d.cnki.gzjdx.2023.002469.
|
4 |
WEN J W, JIANG C, CHEN H. Detection of multi-layered bond delamination defects based on full waveform inversion[J]. Sensors, 2024, 24(12): 4017. DOI:10.3390/s24124017.
|
5 |
周友行, 谢宝安, 高腾腾, 等. 换热管表面的分形表征及积灰特性数值模拟[J]. 中国粉体技术, 2024, 30(6): 85-96. DOI: 10.13732/j.issn.1008-5548.2024.06.008.
|
|
ZHOU Y H, XIE B A, GAO T T, et al. Fractal characterization of heat exchange tube surfaces and numerical simulation on ash deposition characteristics[J]. China Powder Science and Technology, 2024, 30(6): 85-96. DOI: 10.13732/j.issn.1008-5548. 2024.06.008.
|
6 |
LØVSTAD A, CAWLEY P. The reflection of the fundamental torsional guided wave from multiple circular holes in pipes[J]. NDT & E International, 2011, 44(7): 553-562. DOI: 10.1016/j.ndteint.2011.05.010.
|
7 |
张俊峰, 彭怀午, 田家铭, 等. 塔式太阳能吸热器表面热流密度预测及优化[J]. 太阳能学报, 2023, 44(12): 136-142. DOI: 10.19912/j.0254-0096.tynxb.2022-1393.
|
|
ZHANG J F, PENG H W, TIAN J M, et al. Prediction and optimization of heat flux of surface receiver in tower concentrating solar power systen[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 136-142. DOI: 10.19912/j.0254-0096.tynxb. 2022-1393.
|
8 |
BOUDRAA B, BESSAÏH R. Heat transfer analysis of turbulent forced-convection flow in a wavy absorber tube containing a molten salt-based hybrid nanofluid filled with a porous material[J]. Numerical Heat Transfer, Part A: Applications, 2023: 1-23. DOI:10.1080/10407782.2023.2235072.
|
9 |
程堂华, 韩一峰, 蒋川, 等. 塔式太阳能热管接收器表面热流密度分布及光学性能研究[J]. 太阳能学报, 2022, 43(12): 98-103. DOI: 10.19912/j.0254-0096.tynxb.2022-0126.
|
|
CHENG T H, HAN Y F, JIANG C, et al. Heat flux distribution and optical performance of heat pipe receiver in solar tower system[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 98-103. DOI: 10.19912/j.0254-0096.tynxb.2022-0126.
|
10 |
贾培英, 崔成云. 塔式熔盐吸热器热效率计算数值研究[J]. 锅炉制造, 2022(2): 29-30, 46. DOI: 10.3969/j.issn.1674-1005. 2022. 02.012.
|
|
JIA P Y, CUI C Y. Numerical study on the thermal efficiency of tower molten salt receiver [J]. Boiler Manufacturing, 2022(2): 29-30, 46. DOI: 10.3969/j.issn.1674-1005.2022.02.012.
|
11 |
CHANG C, PENG X D, NIE B J, et al. Heat transfer enhancement of a molten salt parabolic trough solar receiver with concentric and eccentric pipe inserts[J]. Energy Procedia, 2017, 142: 624-629. DOI: 10.1016/j.egypro.2017.12.103.
|
12 |
STARKE A R, CARDEMIL J M, BONINI V R B, et al. Assessing the performance of novel molten salt mixtures on CSP applications[J]. Applied Energy, 2024, 359: 122689. DOI: 10. 1016/j.apenergy.2024.122689.
|
13 |
GRAY V, LIPPIATT K, BELL S, et al. Identifying structural integrity issues for molten salt phase change material thermal storage systems from corrosion behavior[C]// Solarpaces 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2020: 10.1063/5.0028680. DOI:10.1063/5.0028680.
|
14 |
SUTTER F, OSKAY C, GALETZ M C, et al. Dynamic corrosion testing of metals in solar salt for concentrated solar power[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111331. DOI: 10.1016/j.solmat.2021.111331.
|
15 |
李高之. 不规则型面表面粗糙度检测技术研究[D]. 长沙: 国防科技大学, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000191.
|
|
LI G Z. Research on surface roughness detection technology of irregular profile[D]. Changsha: National University of Defense Technology, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000191.
|
16 |
王晨雨, 葛明媚, 潘彧, 等. 光切显微镜测量粗糙度实验仿真视频制作[J]. 轻工科技, 2024, 40(6): 136-139.
|
|
WANG C Y, GE M M, PAN Y, et al. Experimental simulation video production for roughness measurement using interferometric microscopy [J]. Light Industry Science and Technology, 2024, 40(6): 136-139.
|
17 |
陈辉, 胡元中, 王慧, 等. 粗糙表面计算机模拟[J]. 润滑与密封, 2006, 31(10): 52-55, 59. DOI: 10.3969/j.issn.0254-0150. 2006.10.016.
|
|
CHEN H, HU Y Z, WANG H, et al. Computer simulation of rough surfaces[J]. Lubrication Engineering, 2006, 31(10): 52-55, 59. DOI: 10.3969/j.issn.0254-0150.2006.10.016.
|