1 |
科技部等九部门关于印发«科技支撑碳达峰碳中和实施方案(2022—2030年)»的通知[EB/OL]. https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2022/202208/t20220817_181986.html.
|
2 |
RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: 113295.
|
3 |
BARRA P H A, DE CARVALHO W C, MENEZES T S, et al. A review on wind power smoothing using high-power energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2020: 110455.
|
4 |
DAI X J, WEI K P, ZHANG X Z. Analysis of the peak load leveling mode of a hybrid power system with flywheel energy storage in oil drilling rig[J]. Energies, 2019, 12(4): doi: 10.3390/en12040606.
|
5 |
PASTOR M L, RODRIGUEZ L G T, VELEZ C V. Flywheels Store to Save: Improving railway efficiency with energy storage[J]. IEEE Electrification Magazine, 2013, 1(2): 13-20.
|
6 |
PULLEN K R. The status and future of flywheel energy storage[J]. Joule, 2019, 3(6): 1394-1399.
|
7 |
LI X J, PALAZZOLO A. A review of flywheel energy storage systems: State of the art and opportunities[J]. Journal of Energy Storage, 2022, 46: 103576.
|
8 |
戴兴建, 姜新建, 张剀. 飞轮储能系统技术与工程应用[M]. 北京: 化学工业出版社, 2021.
|
|
DAI X J, JIANG X J, ZHANG K. Flywheel energy storage technology and engineering application[M]. Beijing: Chemical Industry Press, 2021.
|
9 |
KALE V, SECANELL M. A comparative study between optimal metal and composite rotors for flywheel energy storage systems[J]. Energy Reports, 2018, 4: 576-585.
|
10 |
戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782.
|
|
DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782.
|
11 |
LI X, MITTELSTEDT C, BINDER A. A review of critical issues in the design of lightweight flywheel rotors with composite materials[J]. e & i elektrotechnik und informationstechnik, 2022, 139(2): 204-221.
|
12 |
ROUSE J P, GARVEY S D, CÁRDENAS B, et al. A case study investigation into the risk of fatigue in synchronous flywheel energy stores and ramifications for the design of inertia replacement systems[J]. Journal of Energy Storage, 2021, 39: 102651.
|
13 |
唐长亮, 戴兴建, 蒋晓春, 等. 20kW/2kWh复合材料飞轮轴系动平衡试验[J]. 机械设计与制造, 2014(7): 1-3, 7.
|
|
TANG C L, DAI X J, JIANG X C, et al. Dynamic balance experiment of the 20kW/2kWh composite flywheel shafting[J]. Machinery Design & Manufacture, 2014(7): 1-3, 7.
|
14 |
韩辅君, 房建成. 磁悬浮飞轮转子系统的现场动平衡方法[J]. 航空学报, 2010, 31(1): 184-190.
|
|
HAN F J, FANG J C. Field balancing method for rotor system of a magnetic suspending flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 184-190.
|
15 |
青岛地铁. 飞轮储能项目: 让青岛城市轨道交通驶入绿色快车道[EB/OL]. [2022-04-25]. http://www.qd-metro.com/planning/view.php?id=5565.
|
16 |
李彦吉, 陈鹰, 李祎杨. 基于飞轮储能的牵引变电所能量回收和电能质量综合治理系统的设计[J]. 储能科学与技术, 2022, 11(12): 3883-3894.
|
|
LI Y J, CHEN Y, LI Y Y. Design of regenerative braking and power quality harnessed synthetically system in traction substation based on flywheel energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3883-3894.
|
17 |
李树胜, 王佳良, 李光军, 等. MW级飞轮阵列在风光储能基地示范应用[J]. 储能科学与技术, 2022, 11(2): 583-592.
|
|
LI S S, WANG J L, LI G J, et al. Demonstration applications in wind solar energy storage field based on MW flywheel array system[J]. Energy Storage Science and Technology, 2022, 11(2): 583-592.
|
18 |
范钦珊, 任文敏, 等. 材料力学[M]. 北京: 清华大学出版社, 2004.
|
|
FAN Q S. Mechanics of materials[M]. Beijing: Tsinghua University Press, 2004.
|
19 |
汤双清, 李庆东, 周东伟, 等. 基于复合形法的飞轮转子储能优化设计[J]. 机械, 2017, 44(3): 48-51, 54.
|
|
TANG S Q, LI Q D, ZHOU D W, et al. Optimization design of flywheel rotor based on complex method[J]. Machinery, 2017, 44(3): 48-51, 54.
|