1 |
IEA. Net zero roadmap: A global pathway to keep the 1.5 °C goal in reach[R]. IEA, Paris, 2023. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
|
2 |
张杨, 陶生虎, 张笑波, 等. 配电网储能设备运行策略与容量的协调优化[J]. 储能科学与技术, 2024, 13(3): 903-905. DOI: 10.19799/j.cnki.2095-4239.2023.0873
|
|
ZHANG Y, TAO S H, ZHANG X B, et al. Coordinated optimization of operation strategy and capacity of energy storage equipment in distribution network[J]. Energy Storage Science and Technology, 2024, 13(3): 903-905. DOI: 10.19799/j.cnki.2095-4239.2023.0873
|
3 |
YU Z H, JIA X J, CAI Y H, et al. Electrolyte engineering for efficient and stable vanadium redox flow batteries[J]. Energy Storage Materials, 2024, 69: 103404. DOI: 10.1016/j.ensm. 2024.103404.
|
4 |
LI Y F, KIENBAUM D, LÜTH T, et al. Long term performance evaluation of a commercial vanadium flow battery system[J]. Journal of Energy Storage, 2024, 90: 111790. DOI: 10.1016/j.est. 2024. 111790.
|
5 |
张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. DOI: 10.19799/j.cnki.2095-4239.2022.0246.
|
|
ZHANG H M. Development, cost analysis considering various durations, and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. DOI: 10. 19799/j.cnki.2095-4239.2022.0246.
|
6 |
YE L Z, QI S T, CHENG T K, et al. Vanadium redox flow battery: Review and perspective of 3D electrodes[J]. ACS Nano, 2024, 18(29): 18852-18869. DOI: 10.1021/acsnano.4c06675.
|
7 |
HUANG Y J, XU J, HUANG X L, et al. Advanced vanadium redox flow battery facilitated by synergistic effects of the Co2P-modified electrode[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(34): 12837-12844. DOI: 10.1021/acssuschemeng.4c03551.
|
8 |
YE J Y, XIA L, LI H Y, et al. The critical analysis of membranes toward sustainable and efficient vanadium redox flow batteries[J]. Advanced Materials, 2024, 36(28): e2402090. DOI: 10.1002/adma.202402090.
|
9 |
QI M J, YAN H, WEI W, et al. Covalent triazine frameworks crosslinked microporous polymer membranes with fast and selective ion transport for ultra-stable vanadium redox flow batteries[J]. Chemical Engineering Journal, 2024, 497: 155068. DOI: 10.1016/j.cej.2024.155068.
|
10 |
ZOU W J, KIM Y B, JUNG S. Capacity fade prediction for vanadium redox flow batteries during long-term operations[J]. Applied Energy, 2024, 356: 122329. DOI: 10.1016/j.apenergy. 2023.122329.
|
11 |
谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057. DOI: 10.12028/j.issn.2095-4239. 2017.0133.
|
|
XIE C X, ZHENG Q, LI X F, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057. DOI: 10.12028/j.issn.2095-4239. 2017. 0133.
|
12 |
JIRABOVORNWISUT T, ARPORNWICHANOP A. A review on the electrolyte imbalance in vanadium redox flow batteries[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24485-24509. DOI: 10.1016/j.ijhydene.2019.07.106.
|
13 |
DÜERKOP D, WIDDECKE H, SCHILDE C, et al. Polymer membranes for all-vanadium redox flow batteries: A review[J]. Membranes, 2021, 11(3): 214. DOI: 10.3390/membranes1103 0214.
|
14 |
ZHANG Y N, MA K J, KUANG X R, et al. Real-time study of the disequilibrium transfer in vanadium flow batteries at different states of charge via refractive index detection[J]. The Journal of Physical Chemistry C, 2018, 122(50): 28550-28555. DOI: 10. 1021/acs.jpcc. 8b10165.
|
15 |
JIANG B, WU L T, YU L H, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries[J]. Journal of Membrane Science, 2016, 510: 18-26. DOI: 10.1016/j.memsci. 2016.03.007.
|
16 |
ZHAI L, ZHU Y L, WANG G, et al. Ionic-nanophase hybridization of nafion by supramolecular patching for enhanced proton selectivity in redox flow batteries[J]. Nano Letters, 2023, 23(9): 3887-3896. DOI: 10.1021/acs.nanolett.3c00518.
|
17 |
HE H B, SONG S H, ZHAI L, et al. Supramolecular modifying nafion with fluoroalkyl-functionalized polyoxometalate nanoclusters for high-selective proton conduction[J]. Angewandte Chemie International Edition, 2024: e202409006. DOI: 10.1002/anie.202409006.
|
18 |
BUI T T, SHIN M, ABBAS S, et al. Sulfonated para-polybenzimidazole membranes for use in vanadium redox flow batteries[J]. Advanced Energy Materials, 2024: 2401375. DOI: 10.1002/aenm.202401375.
|
19 |
BARD A J, FAULKNER L R. Electrochemical methods. fundamentals and applications[M]. 2nd Edition. John Wiley & Sons, Inc., 2001.
|
20 |
KÖBLE K, ERSHOV A, DUAN K J, et al. Insights into the hydrogen evolution reaction in vanadium redox flow batteries: A synchrotron radiation based X-ray imaging study[J]. Journal of Energy Chemistry, 2024, 91: 132-144. DOI: 10.1016/j.jechem. 2023.12.010.
|
21 |
AL NAJJAR T, OMRAN M M, ALLAM N K, et al. Tungsten oxide nanostructures for all-vanadium redox flow battery: Enhancing the V(Ⅱ)/(Ⅷ) reaction and inhibiting H2 evolution[J]. Journal of Energy Storage, 2024, 79: 110123. DOI: 10.1016/j.est. 2023.110123.
|
22 |
MA T, HUANG Z B, XIE X, et al. Evaluation of the effect of hydrogen evolution reaction on the performance of all-vanadium redox flow batteries[J]. Electrochimica Acta, 2024, 504: 144895. DOI: 10.1016/j.electacta.2024.144895.
|
23 |
HUANG Z B, LIU Y L, XIE X, et al. Experimental validation of side reaction on capacity fade of vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2024, 171(1): 010521. DOI: 10.1149/1945-7111/ad1ec8.
|
24 |
WANG K, LIU L, XI J Y, et al. Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method[J]. Journal of Power Sources, 2017, 338: 17-25. DOI: 10.1016/j.jpowsour.2016.11.031.
|
25 |
BHATTARAI A, GHIMIRE P C, WHITEHEAD A, et al. Novel approaches for solving the capacity fade problem during operation of a vanadium redox flow battery[J]. Batteries, 2018, 4(4): 48. DOI: 10.3390/batteries4040048.
|
26 |
LI Z Y, LIU L, ZHAO Y, et al. The indefinite cycle life via a method of mixing and online electrolysis for vanadium redox flow batteries[J]. Journal of Power Sources, 2019, 438: 226990. DOI: 10.1016/j.jpowsour.2019.226990.
|
27 |
HEO J, HAN J Y, KIM S, et al. Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries[J]. Nature Communications, 2019, 10: 4412. DOI: 10.1038/s41467-019-12363-7.
|
28 |
MATSUI T, KITAGAWA Y, OKUMURA M, et al. Accurate standard hydrogen electrode potential and applications to the redox potentials of vitamin C and NAD/NADH[J]. The Journal of Physical Chemistry A, 2015, 119(2): 369-376. DOI: 10.1021/jp508308y.
|
29 |
PARK G, LIM Y, HYUN K, et al. Rapid preparation of desirable vanadium electrolyte using ascorbic acid as a reducing agent in vanadium redox flow batteries[J]. Journal of Power Sources, 2024, 589: 233770. DOI: 10.1016/j.jpowsour.2023.233770.
|
30 |
WEI L, FAN X Z, JIANG H R, et al. Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method[J]. Journal of Power Sources, 2020, 478: 228725. DOI: 10.1016/j.jpowsour.2020.228725.
|
31 |
LEUNG P, SHAH A A, SANZ L, et al. Recent developments in organic redox flow batteries: A critical review[J]. Journal of Power Sources, 2017, 360: 243-283. DOI: 10.1016/j.jpowsour.2017. 05.057.
|
32 |
YE T, LI Z M, YAN H L, et al. Magnetic frustration effect on the rate performance of LiNi0.6Co0.4- xMnxO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(33): 2201556. DOI: 10.1002/aenm.202201556.
|
33 |
KÖBLE K, SCHILLING M, EIFERT L, et al. Revealing the multifaceted impacts of electrode modifications for vanadium redox flow battery electrodes[J]. ACS Applied Materials & Interfaces, 2023, 15(40): 46775-46789. DOI: 10.1021/acsami. 3c07940.
|
34 |
HOSSAIN M H, ABDULLAH N, TAN K H, et al. Evolution of vanadium redox flow battery in electrode[J]. Chemical Record, 2024, 24(1): e202300092. DOI: 10.1002/tcr.202300092.
|
35 |
徐冉, 王宝冬, 王绍亮, 等. 杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术, 2024, 13(6): 1849-1860. DOI: 10.19799/j.cnki.2095-4239.2023.0929
|
|
XU R, WANG B D, WANG S L, et al. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1849-1860. DOI: 10.19799/j.cnki.2095-4239.2023.0929
|
36 |
MILLER M A, BOURKE A, QUILL N, et al. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency[J]. Journal of the Electrochemical Society, 2016, 163(9): A2095-A2102. DOI: 10.1149/2.1091609jes.
|