储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2803-2812.doi: 10.19799/j.cnki.2095-4239.2024.0216

• 储能测试与评价 • 上一篇    下一篇

大容量储能电池模组热失控传播行为与燃爆风险分析

陈晔1,2,3(), 李晋1,2,3, 吴候福4, 张少禹1,2,3, 储玉喜1,2,3, 卓萍1,2,3()   

  1. 1.应急管理部天津消防研究所
    2.工业与公共建筑火灾防控技术应急管理部重点实验室
    3.天津市消防安全技术重点实验室,天津 300381
    4.广州鹏辉能源科技股份有限公司,广州 广东 511400
  • 收稿日期:2024-03-14 修回日期:2024-04-09 出版日期:2024-08-28 发布日期:2024-08-15
  • 通讯作者: 卓萍 E-mail:chenye@tfri.com.cn;zhuoping@tfri.com.cn
  • 作者简介:陈晔(1988—),男,博士,副研究员,主要从事锂离子电池、氢能火灾安全领域相关研究,E-mail:chenye@tfri.com.cn
  • 基金资助:
    国际锂离子电池储能安全评价关键技术合作研发(2022YFE0207400)

Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage

Ye CHEN1,2,3(), Jin LI1,2,3, Houfu WU4, Shaoyu ZHANG1,2,3, Yuxi CHU1,2,3, Ping ZHUO1,2,3()   

  1. 1.Tianjin Fire Research Institute of Emergency Management Department
    2.Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management
    3.Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
    4.Guangzhou Great Power Energy & Technology Company Limited, Guangzhou 511400, Guangdong, China
  • Received:2024-03-14 Revised:2024-04-09 Online:2024-08-28 Published:2024-08-15
  • Contact: Ping ZHUO E-mail:chenye@tfri.com.cn;zhuoping@tfri.com.cn

摘要:

锂离子电池热失控引发的储能系统火灾爆炸问题长期制约着产业发展。为了探究实际应用场景下大容量储能电池、电池模组的热失控及其传播行为与燃爆风险,本文以储能用280 Ah磷酸铁锂电池及其组成的1P48S电池模组为研究对象,对热滥用条件下电池单体产热、产气特征以及真实模组内热失控蔓延特征进行了实验研究,并基于试验产气结果,对2种典型储能应用场景下因模组热失控传播而导致的燃爆风险进行了分析,结果表明:电池单体热失控产生最高温度为380.1 ℃,热失控释放混合气体总量为156.8 L,混合气体爆炸极限为6.9%~35.5%;模组内设置的隔热板有效阻隔了热失控蔓延,其间未设隔热板的6块电池发生了热失控,热失控电池表面最高温度超1200℃,热失控传播速度为0.162~0.233 mm/s,同时在热失控高温影响下模组箱体外部上表面温度最高达281.3 ℃;模组内6块电池热失控会导致预制舱式储能系统较高燃爆风险,应将热失控传播控制在2块电池以内,但模组内1块电池从开阀产气至热失控的过程中便会导致工商业用储能柜较高的燃爆风险。该研究可为储能电池模组安全设计和储能系统防爆设计提供参考。

关键词: 电化学储能, 电池模组, 热失控传播, 燃爆风险

Abstract:

Fires and explosions of energy storage systems caused by the thermal runaway (TR) of lithium-ion batteries restricts the their use in the industry. A 280 Ah lithium-ion battery and 1P48S battery module were used as research objects to investigate the propagation behavior of the TR and the explosion risk of large batteries and battery modules used for energy storage in real-life scenarios. Moreover, experimental studies were conducted on the heat and gas production characteristics of battery cells, as well as the TR propagation characteristics of the module under the condition of thermal abuse. Based on the gas production results, the explosion risk in two typical energy storage application scenarios caused by TR propagation within the module was analyzed. The results show that the maximum temperature of the cell caused by the TR was 380.1 ℃, the total gas volume during TR was 156.8 L, and the explosion limit of the mixed gas was 6.9%—35.5%. The heat insulation plate installed inside the module effectively inhibited the TR propagation, six battery cells without heat insulation plates experienced TR, the highest surface temperature of battery cells exceeded 1200 ℃, and the TR propagation speed was in the range 0.162—0.233 mm/s, meanwhile the upper surface temperature of the module box reached 281.3 ℃. Six cells that experience TR in the module will lead to a high explosion risk in a container-type energy storage system; thus, the TR propagation should be controlled within two cells, but the process from venting to the TR of one cell in the module will lead to a high explosion risk in the energy storage cabin for commercial and industrial use. This research can provide a guide for the safe design of battery modules and explosion-proof design of an energy storage system.

Key words: electrochemical energy storage, battery module, thermal runway propagation, explosion risk

中图分类号: