1 |
The International Renewable Energy Agency. Renewable energy statistics 2022[R]. Abu Dhabi: IRENA, 2022.
|
2 |
Ember, Global electricity review 2022[R]. London: EMBER, 2022.
|
3 |
DALALA Z, AL-OMARI M, AL-ADDOUS M, et al. Increased renewable energy penetration in national electrical grids constraints and solutions[J]. Energy, 2022, 246: doi: 10.1016/j.energy.2022.123361.
|
4 |
ZHANG Z Y, DING T, ZHOU Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148: doi: 10.1016/j.rser.2021.111263.
|
5 |
ALBAWAB M, GHENAI C, BETTAYEB M, et al. Sustainability performance index for ranking energy storage technologies using multi-criteria decision-making model and hybrid computational method[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101820.
|
6 |
张子岩, 张俊艳. 基于高质量专利的储能关键技术国际竞争态势[J]. 储能科学与技术, 2022, 11(1): 321-334.
|
|
ZHANG Z Y, ZHANG J Y. International competition of key energy storage technologies based on high-quality patents[J]. Energy Storage Science and Technology, 2022, 11(1): 321-334.
|
7 |
中国化学与物理电源行业协会储能应用分会. 2022储能产业应用研究报告[R]. 北京: 中国化学与物理电源行业协会储能应用分会, 2022.China Industrial Association of Power Sources. Research report on industry of stored energy in 2022[R]. Beijing: CIAPS, 2022.
|
8 |
朱晟, 彭怡婷, 闵宇霖, 等. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852.
|
|
ZHU S, PENG Y T, MIN Y L, et al. Research progress on materials and technologies for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852.energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852.
|
9 |
张文建, 崔青汝, 李志强, 等. 电化学储能在发电侧的应用[J]. 储能科学与技术, 2020, 9(1): 287-295.
|
|
ZHANG W J, CUI Q R, LI Z Q, et al. Application of electrochemical energy storage in power generation[J]. Energy Storage Science and Technology, 2020, 9(1): 287-295.
|
10 |
孟祥飞, 庞秀岚, 崇锋, 等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术, 2019, 8(S1): 38-42.
|
|
MENG X F, PANG X L, CHONG F, et al. Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42.
|
11 |
LAKHNOT A S, BHIMANI K, MAHAJANI V, et al. Reversible and rapid calcium intercalation into molybdenum vanadium oxides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(30): doi: 10.1073/pnas.2205762119.
|
12 |
LI S M, CHEN Z F, ZHANG W T, et al. High-throughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries[J]. Nano Energy, 2022, 102: doi:10.1016/j.nanoen.2022.107640.
|
13 |
SHAN X F, WU J, ZHANG X T, et al. Wood for application in electrochemical energy storage devices[J]. Cell Reports Physical Science, 2021, 2(12): doi: 10.1016/j.xcrp.2021.100654.
|
14 |
KRISHNAMURTI V, YANG B, MURALI A, et al. Aqueous organic flow batteries for sustainable energy storage[J]. Current Opinion in Electrochemistry, 2022, 35: doi: 10.1016/j.coelec.2022.101100.
|
15 |
DOU H R, CLERC P. Trends in 3-D printing from a patent information analysis (APA)[J]. International Journal of Technology Intelligence and Planning, 2015, 10(3/4): doi: 10.1504/ijtip.2015.070854.
|
16 |
MÜLLER S, SANDNER P, WELPE I. Monitoring innovation in electrochemical energy storage technologies: A patent-based approach[J]. Energy Procedia, 2014, 61: 2293-2296.
|
17 |
BLOCK A, SONG C H. Exploring the characteristics of technological knowledge interaction dynamics in the field of solid-state batteries: A patent-based approach[J]. Journal of Cleaner Production, 2022, 353: doi: 10.1016/j.jclepro.2022.131689.
|
18 |
CHOI H, WOO J. Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model[J]. Applied Energy, 2022, 313: doi: 10.1016/j.apenergy.2022.118898.
|
19 |
BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
|
20 |
MA S C, XU J H, FAN Y. Characteristics and key trends of global electric vehicle technology development: A multi-method patent analysis[J]. Journal of Cleaner Production, 2022, 338: doi: 10.1016/j.jclepro.2022.130502.
|
21 |
ZHANG H, DAIM T, ZHANG Y Q. Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of blockchain[J]. Technological Forecasting and Social Change, 2021, 167: doi: 10.1016/j.techfore.2021.120729.
|
22 |
AKHAVAN M, SEBT M V, AMELI M. Risk assessment modeling for knowledge based and startup projects based on feasibility studies: A Bayesian network approach[J]. Knowledge-Based Systems, 2021, 222: doi: 10.1016/j.knosys.2021.106992.
|
23 |
CARLESS T S, REDUS K, DRYDEN R. Estimating nuclear proliferation and security risks in emerging markets using Bayesian Belief Networks[J]. Energy Policy, 2021, 159: doi: 10.1016/j.enpol.2021.112549.
|
24 |
HOFFMAN M, BACH F R, BLEI D M. Online learning for latent Dirichlet allocation[C]// Advances in Neural Information Processing Systems 23: Curran Associates, 2010: 856-864.
|
25 |
郭丕斌, 施涛, 吴青龙. 基于R语言主题模型的光伏产业创新政策层级性特征分析[J]. 科技进步与对策, 2021, 38(2): 128-136.
|
|
GUO P B, SHI T, WU Q L. Quantitative analysis of the hierarchical characteristics of photovoltaic industry innovation policy based on R language theme model[J]. Science & Technology Progress and Policy, 2021, 38(2): 128-136.
|
26 |
KUMAR M, NG J. Using text mining and topic modelling to understand success and growth factors in Global Renewable Energy Projects[J]. Renewable Energy Focus, 2022, 42: 211-220.
|
27 |
GRIFFITHS T L, STEYVERS M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(suppl_1): 5228-5235.
|
28 |
SUN L J, YIN Y F. Discovering themes and trends in transportation research using topic modeling[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 49-66.
|