1 |
CHEN R J, LUO R, HUANG Y X, et al. Advanced high energy density secondary batteries with multi-electron reaction materials[J]. Advanced Science, 2016, 3(10): 1600051. DOI:10.1002/advs.201600051.
|
2 |
MA X T, AZHARI L, WANG Y. Li-ion battery recycling challenges[J]. Chem, 2021, 7(11): 2843-2847. DOI:10.1016/j.chempr. 2021.09.013.
|
3 |
BÖRGER A, MERTENS J, WENZL H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about?[J]. Journal of Energy Storage, 2019, 24: 100649. DOI:10.1016/j.est.2019.01.012.
|
4 |
WANG H B, WANG Q Z, ZHAO Z Y, et al. Thermal runaway propagation behavior of the Cell-to-Pack battery system[J]. Journal of Energy Chemistry, 2023, 84: 162-172. DOI:10.1016/j.jechem.2023.05.015.
|
5 |
DENG J, CHEN B H, LU J Z, et al. Thermal runaway and combustion characteristics, risk and hazard evaluation of lithium-iron phosphate battery under different thermal runaway triggering modes[J]. Applied Energy, 2024, 368: 123451. DOI:10.1016/j.apenergy.2024.123451.
|
6 |
SONG L B, ZHENG Y H, XIAO Z L, et al. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. Journal of Electronic Materials, 2022, 51(1): 30-46. DOI:10.1007/s11664-021-09281-0.
|
7 |
ZHU X Q, SUN Z W, WANG Z P, et al. Thermal runaway in commercial lithium-ion cells under overheating condition and the safety assessment method: Effects of SoCs, cathode materials and packaging forms[J]. Journal of Energy Storage, 2023, 68: 107768. DOI:10.1016/j.est.2023.107768.
|
8 |
WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI:10.1016/j.jechem.2020.07.028.
|
9 |
WEI D, ZHANG M Q, ZHU L P, et al. Study on thermal runaway behavior of Li-ion batteries using different abuse methods[J]. Batteries, 2022, 8(11): 201. DOI:10.3390/batteries8110201.
|
10 |
WANG K, WU D J, CHANG C Y, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. DOI:10.1016/j.jclepro.2023.139992.
|
11 |
KANG R X, JIA C X, ZHAO J L, et al. Effects of capacity on the thermal runaway and gas venting behaviors of large-format lithium iron phosphate batteries induced by overcharge[J]. Journal of Energy Storage, 2024, 87: 111523. DOI:10.1016/j.est.2024.111523.
|
12 |
QIU M M, LIU J H, CONG B H, et al. Research progress in thermal runaway vent gas characteristics of Li-ion battery[J]. Batteries, 2023, 9(8): 411. DOI:10.3390/batteries9080411.
|
13 |
WANG S P, SONG L F, LI C H, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery[J]. Journal of Energy Storage, 2023, 74: 109368. DOI:10.1016/j.est.2023.109368.
|
14 |
JIA Z Z, WANG S P, QIN P, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791.
|
15 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI:10.1016/j.pecs.2019.03.002.
|
16 |
QI C, LIU Z Y, LIN C J, et al. The gas production characteristics and catastrophic hazards evaluation of thermal runaway for LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries under different SOCs[J]. Journal of Energy Storage, 2024, 88: 111678. DOI:10.1016/j.est.2024.111678.
|
17 |
XU C S, FAN Z W, ZHANG M Q, et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods[J]. Cell Reports Physical Science, 2023, 4(12): 101705. DOI:10.1016/j.xcrp.2023.101705.
|
18 |
SHEN H J, WANG H W, LI M H, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12(7): 1603. DOI:10.3390/electronics12071603.
|
19 |
FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208. DOI:10.1016/j.energy. 2016.08.094.
|
20 |
宋来丰, 梅文昕, 贾壮壮, 等. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349.
|
|
SONG L F, MEI W X, JIA Z Z, et al. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349.
|
21 |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. DOI:10.1039/C3RA45748F.
|
22 |
LIAO Z H, ZHANG S, ZHAO Y K, et al. Experimental evaluation of thermolysis-driven gas emissions from LiPF6-carbonate electrolyte used in lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 124-135. DOI:10.1016/j.jechem. 2020. 01.030.
|
23 |
KONG W H, LI H, HUANG X J, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1/2): 285-291. DOI:10.1016/j.jpowsour.2004.10.008.
|
24 |
ZOU K Y, HE K, LU S X. Venting composition and rate of large-format LiNi0.8Co0.1Mn0.1O2 pouch power battery during thermal runaway[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123133. DOI:10.1016/j.ijheatmasstransfer. 2022. 123133.
|
25 |
WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. DOI:10.1016/j.nanoen.2018.10.035.
|
26 |
DIAZ F, WANG Y, WEYHE R, et al. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111. DOI:10.1016/j.wasman.2018.11.029.
|
27 |
XU L J, WANG S L, LI Y T, et al. Thermal runaway propagation behavior and gas production characteristics of NCM622 battery modules at different state of charge[J]. Process Safety and Environmental Protection, 2024, 185: 267-276. DOI:10.1016/j.psep.2024.03.011.
|
28 |
ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759. DOI:10.1016/j.est.2021.103759.
|