储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 648-658.doi: 10.19799/j.cnki.2095-4239.2024.0751
陈岳浩1(), 陈莎1, 陈慧兰1, 孙小琴1(
), 罗永强2
收稿日期:
2024-08-12
修回日期:
2024-08-20
出版日期:
2025-02-28
发布日期:
2025-03-18
通讯作者:
孙小琴
E-mail:1136367209@qq.com;xiaoqinsun@csust.edu.com
作者简介:
陈岳浩(1995—),男,硕士研究生,助理工程师,研究方向为动力及储能电池热管理,E-mail:1136367209@qq.com;
基金资助:
Yuehao CHEN1(), Sha CHEN1, Huilan CHEN1, Xiaoqin SUN1(
), Yongqiang LUO2
Received:
2024-08-12
Revised:
2024-08-20
Online:
2025-02-28
Published:
2025-03-18
Contact:
Xiaoqin SUN
E-mail:1136367209@qq.com;xiaoqinsun@csust.edu.com
摘要:
随着储能需求的快速增长,单体电池容量越来越大,大容量电池逐渐成为电化学储能系统的主流,然而对现有电池组冷却系统的研究仍集中在小容量电池系统。本工作对280 Ah大容量电池组浸没式液冷系统进行研究,探讨了电池间距,冷却液进出口方式、进口流速、种类对冷却性能的影响,进一步分析了冷却液热物性参数对冷却效果的影响权重。结果表明:适当增加电池间距对浸没式液冷电池组冷却效果有积极影响,当电池间距由0增加至5 mm时,电池组最大温差ΔTmax、最高温度Tmax分别降低1.57 ℃、1.84 ℃;冷却液进口位置对ΔTmax和Tmax影响大于出口位置的影响,进口位置对电池箱体内流场影响大于出口位置的影响;ΔTmax和Tmax随进口流速增加而降低,进口流速由0.2 m/s增加至0.4 m/s时,ΔTmax和Tmax分别降低21.2%、8.0%;去离子水冷却效果最佳,硅油冷却效果最差,去离子水相较于硅油的ΔTmax和Tmax分别降低5.17 ℃、5.99 ℃;冷却液热物性参数对电池组冷却效果影响权重依次为密度、比热容、热导率和动力黏度。本研究结果对大容量电池组浸没式液冷系统设计具有一定指导意义。
中图分类号:
陈岳浩, 陈莎, 陈慧兰, 孙小琴, 罗永强. 储能电池组浸没式液冷系统冷却性能模拟研究[J]. 储能科学与技术, 2025, 14(2): 648-658.
Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs[J]. Energy Storage Science and Technology, 2025, 14(2): 648-658.
1 | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9. DOI: 10.13334/j.0258-8013.pcsee.162555. |
SHU Y B, ZHANG Z G, GUO J B, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9. DOI: 10.13334/j.0258-8013.pcsee. 162555. | |
2 | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. DOI: 10.16418/j.issn.1000-3045.20220311001. |
ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. DOI: 10.16418/j.issn.1000-3045.20220311001. | |
3 | IANNICIELLO L, BIWOLÉ P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials[J]. Journal of Power Sources, 2018, 378: 383-403. DOI:10.1016/j.jpowsour.2017.12.071. |
4 | GIULIANO M R, PRASAD A K, ADVANI S G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216: 345-352. DOI:10.1016/j.jpowsour.2012.05.074. |
5 | FAN L W, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. DOI:10.1016/j.jpowsour. 2013. 03.050. |
6 | 凌子夜, 方晓明, 汪双凤, 等. 相变材料用于锂离子电池热管理系统的研究进展[J]. 储能科学与技术, 2013, 2(5): 451-459. DOI: 10.3969/j.issn.2095-4239.2013.05.002. |
LING Z Y, FANG X M, WANG S F, et al. Thermal management of lithium-ion batteries using phase change materials[J]. Energy Storage Science and Technology, 2013, 2(5): 451-459. DOI: 10.3969/j.issn.2095-4239.2013.05.002. | |
7 | YANG Y, CHEN L, TONG K, et al. Thermal-electrical characteristics of lithium-ion battery module in series connection with a hybrid cooling[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122309. DOI:10.1016/j.ijheatmasstransfer. 2021.122309. |
8 | 江毅, 李超恩, 温小栋, 等. 基于浸没式液冷的锂电池热管理研究进展[J]. 暖通空调, 2024, 54(2): 1-10. DOI: 10.19991/j.hvac1971.2024.02.01. |
JIANG Y, LI C E, WEN X D, et al. Recent advancements on thermal management of lithium batteries based on immersion liquid cooling[J]. Heating Ventilating & Air Conditioning, 2024, 54(2): 1-10. DOI: 10.19991/j.hvac1971.2024.02.01. | |
9 | SURESH PATIL M, SEO J H, LEE M Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021, 229: 113715. DOI:10.1016/j.enconman.2020.113715. |
10 | TAN X J, LYU P X, FAN Y Q, et al. Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion battery pack in hydrofluoroether[J]. Applied Thermal Engineering, 2021, 196: 117279. DOI:10.1016/j.applthermaleng.2021.117279. |
11 | LE Q, SHI Q L, LIU Q, et al. Numerical investigation on manifold immersion cooling scheme for lithium ion battery thermal management application[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122750. DOI:10.1016/j.ijheatmasstransfer. 2022.122750. |
12 | WANG H T, TAO T, XU J, et al. Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J]. Journal of Energy Storage, 2022, 46: 103835. DOI:10.1016/j.est.2021.103835. |
13 | QIU D L, CAO L Q, WANG Q D, et al. Experimental and numerical study of 3D stacked dies under forced air cooling and water immersion cooling[J]. Microelectronics Reliability, 2017, 74: 34-43. DOI:10.1016/j.microrel.2017.02.016. |
14 | LUO M Y, CAO J H, LIU N H, et al. Experimental and simulative investigations on a water immersion cooling system for cylindrical battery cells[J]. Frontiers in Energy Research, 2022, 10: 803882. DOI:10.3389/fenrg.2022.803882. |
15 | JITHIN K V, RAJESH P K. Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122608. DOI:10.1016/j.ijheatmasstransfer.2022.122608. |
16 | LIU J H, FAN Y N, XIE Q M. Feasibility study of a novel oil-immersed battery cooling system: Experiments and theoretical analysis[J]. Applied Thermal Engineering, 2022, 208: 118251. DOI:10.1016/j.applthermaleng.2022.118251. |
17 | 吴成会, 梁才航. 基于浸没式冷却的锂离子电池实验研究[J]. 电源技术, 2023, 47(11): 1409-1413. DOI: 10.3969/j.issn.1002-087X. 2023.11.006. |
WU C H, LIANG C H. Experimental study of lithium-ion battery based on immersion cooling[J]. Chinese Journal of Power Sources, 2023, 47(11): 1409-1413. DOI: 10.3969/j.issn.1002-087X.2023.11.006. | |
18 | DUBEY P, PULUGUNDLA G, SROUJI A K. Direct comparison of immersion and cold-plate based cooling for automotive Li-ion battery modules[J]. Energies, 2021, 14(5): 1259. DOI:10.3390/en14051259. |
19 | 郭骞. 新能源电站中储能电池技术的对比与发展前景预测[J]. 太阳能, 2021(12): 5-10. DOI: 10.19911/j.1003-0417.tyn20210318.05. |
GUO Q. Renewable energy bess system technology comparison and prediction[J]. Solar Energy, 2021(12): 5-10. DOI: 10.19911/j.1003-0417.tyn20210318.05. | |
20 | 朱信龙, 王均毅, 潘加爽, 等. 集装箱储能系统热管理系统的现状及发展[J]. 储能科学与技术, 2022, 11(1): 107-118. DOI: 10.19799/j.cnki.2095-4239.2021.0381. |
ZHU X L, WANG J Y, PAN J S, et al. Present situation and development of thermal management system for battery energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. DOI: 10.19799/j.cnki.2095-4239.2021.0381. | |
21 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 132(1): 5-12. DOI:10.1149/1.2113792. |
22 | PESARAN A A, KEYSER M, BURCH S. An approach for designing thermal management systems for electric and hybrid vehicle battery packs [R]. Office of Scientific & Technical Information Technical Reports, 1999. |
23 | 刘周斌, 朱涛, 姜巍, 等. 储能锂离子电池包冷却系统的数值模拟与结构优化[J]. 中国电力, 2023, 56(10): 202-210. DOI: 10.11930/j.issn.1004-9649.202306114. |
LIU Z B, ZHU T, JIANG W, et al. Simulation analysis and structure optimization of cooling system for energy storage lithium-ion battery pack[J]. Electric Power, 2023, 56(10): 202-210. DOI: 10.11930/j.issn.1004-9649.202306114. | |
24 | 宋来丰, 梅文昕, 贾壮壮, 等. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349. |
SONG L F, MEI W X, JIA Z Z, et al. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349. | |
25 | 唐康, 刘振祥, 唐丹, 等. 分布式电池系统热平衡控制设计[J]. 电池, 2024, 54(1): 41-46. DOI: 10.19535/j.1001-1579.2024.01.009. |
TANG K, LIU Z X, TANG D, et al. Design of thermal balancing control for distributed battery system[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 41-46. DOI: 10.19535/j.1001-1579.2024.01.009. | |
26 | WANG Z P, ZHAO R J, WANG S Z, et al. Heat transfer characteristics and influencing factors of immersion coupled direct cooling for battery thermal management[J]. Journal of Energy Storage, 2023, 62: 106821. DOI:10.1016/j.est. 2023. 106821. |
27 | TRIMBAKE A, SINGH C P, KRISHNAN S. Mineral oil immersion cooling of lithium-ion batteries: An experimental investigation[J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(2): 021007. DOI:10.1115/1.4052094. |
28 | 姜贵文. 高导热复合相变材料的制备与动力电池热管理应用研究[D]. 南昌: 南昌大学, 2017. |
JIANG G W. Preparation of composite phase change materials with high thermal conductivity and application research on thermal management of power battery[D]. Nanchang: Nanchang University, 2017. | |
29 | 曾少鸿, 吴伟雄, 刘吉臻, 等. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. |
ZENG S H, WU W X, LIU J Z, et al. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. |
[1] | 李岳峰, 丁纬达, 韦银涛, 孙勇, 饶庆, 项峰, 姚颖聪. 关键因素对储能浸没式锂电池包温度特性影响的研究[J]. 储能科学与技术, 2025, 14(1): 152-161. |
[2] | 陈国贺, 吕培召, 李孟涵, 饶中浩. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. |
[3] | 刘松燕, 王卫良, 彭世亮, 吕俊复. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. |
[4] | 张云峰, 张学文, 钟威, 蒋杜伟, 陈泽伟, 张杰. 石蜡与低熔点合金双级联相变材料强化板翅式散热器换热性能的数值模拟[J]. 储能科学与技术, 2024, 13(5): 1460-1470. |
[5] | 刘鑫宇, 张安安, 廖长江. 不同支撑结构的固体氧化物燃料电池数值模拟分析[J]. 储能科学与技术, 2024, 13(5): 1710-1720. |
[6] | 张坎, 付婷, 王江波. 基于拓扑优化方法的蛛网散热结构均温性研究[J]. 储能科学与技术, 2024, 13(5): 1721-1730. |
[7] | 田禾青, 高艺明, 周俊杰. 二元氯化物熔盐纳米流体在方腔内熔化过程的数值模拟[J]. 储能科学与技术, 2024, 13(3): 1030-1035. |
[8] | 刘剑, 于立博, 吴振兴, 牟介刚. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. |
[9] | 廖琪, 曹小林, 邓谊柏, 杨耀林, 陈挺. 有轨电车超级电容模组液冷散热仿真分析[J]. 储能科学与技术, 2024, 13(2): 702-711. |
[10] | 李鸿臣, 陈宝明, 朱彭真, 仲崇龙, 马超富. 含各向异性TPMS骨架复合材料相变传热特性研究[J]. 储能科学与技术, 2024, 13(12): 4319-4329. |
[11] | 柴伟杰, 赵锡佳, 曹世豪. 金属蜂窝增强相变材料熔化储热试验与数值模拟[J]. 储能科学与技术, 2024, 13(12): 4357-4367. |
[12] | 王利明, 王梦奇, 罗伊默, 杨格桑, 汪媛媛, 王乐霄. 沸石储热反应器优化设计方法研究[J]. 储能科学与技术, 2024, 13(12): 4272-4281. |
[13] | 肖振坤, 陈珍, 杨壮, 戚宏勋, 闫君. 基于相变储热的先进高温热泵储能单元的热力学分析[J]. 储能科学与技术, 2024, 13(12): 4330-4338. |
[14] | 王乐霄, 罗伊默, 王利明, 杨格桑. 水合盐热化学反应器多因素耦合作用下的性能研究[J]. 储能科学与技术, 2024, 13(12): 4396-4405. |
[15] | 李龙, 杨玺庆, 陶玲. 基于修正显热容法对相变储热系统蓄热行为的仿真分析[J]. 储能科学与技术, 2024, 13(11): 3939-3948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||