储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 648-658.doi: 10.19799/j.cnki.2095-4239.2024.0751

• 储能系统与工程 • 上一篇    下一篇

储能电池组浸没式液冷系统冷却性能模拟研究

陈岳浩1(), 陈莎1, 陈慧兰1, 孙小琴1(), 罗永强2   

  1. 1.长沙理工大学能源与动力工程学院,湖南 长沙 410114
    2.中国移动通信集团设计院,北京 100080
  • 收稿日期:2024-08-12 修回日期:2024-08-20 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 孙小琴 E-mail:1136367209@qq.com;xiaoqinsun@csust.edu.com
  • 作者简介:陈岳浩(1995—),男,硕士研究生,助理工程师,研究方向为动力及储能电池热管理,E-mail:1136367209@qq.com
  • 基金资助:
    湖南省科技创新领军人才(2023RC1057)

Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs

Yuehao CHEN1(), Sha CHEN1, Huilan CHEN1, Xiaoqin SUN1(), Yongqiang LUO2   

  1. 1.School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
    2.China Mobile Group Design Institute Co. , Ltd. , Beijing 100080, China
  • Received:2024-08-12 Revised:2024-08-20 Online:2025-02-28 Published:2025-03-18
  • Contact: Xiaoqin SUN E-mail:1136367209@qq.com;xiaoqinsun@csust.edu.com

摘要:

随着储能需求的快速增长,单体电池容量越来越大,大容量电池逐渐成为电化学储能系统的主流,然而对现有电池组冷却系统的研究仍集中在小容量电池系统。本工作对280 Ah大容量电池组浸没式液冷系统进行研究,探讨了电池间距,冷却液进出口方式、进口流速、种类对冷却性能的影响,进一步分析了冷却液热物性参数对冷却效果的影响权重。结果表明:适当增加电池间距对浸没式液冷电池组冷却效果有积极影响,当电池间距由0增加至5 mm时,电池组最大温差ΔTmax、最高温度Tmax分别降低1.57 ℃、1.84 ℃;冷却液进口位置对ΔTmaxTmax影响大于出口位置的影响,进口位置对电池箱体内流场影响大于出口位置的影响;ΔTmaxTmax随进口流速增加而降低,进口流速由0.2 m/s增加至0.4 m/s时,ΔTmaxTmax分别降低21.2%、8.0%;去离子水冷却效果最佳,硅油冷却效果最差,去离子水相较于硅油的ΔTmaxTmax分别降低5.17 ℃、5.99 ℃;冷却液热物性参数对电池组冷却效果影响权重依次为密度、比热容、热导率和动力黏度。本研究结果对大容量电池组浸没式液冷系统设计具有一定指导意义。

关键词: 浸没式冷却, 电池热管理, 参数敏感性, 数值模拟

Abstract:

With the rapidly increasing demand for energy storage, single batteries are increasingly designed for larger capacities. Consequently, large-capacity batteries are gradually becoming mainstream electrochemical energy storage systems. However, existing research on battery pack cooling systems primarily focuses on the small-capacity battery systems. In this study, we investigate a submerged liquid cooling system for 280 Ah large-capacity battery packs. We discuss the effects of various parameters on cooling performance, including battery spacing, coolant import and export methods, inlet and outlet flow rates, and types. Furthermore, we analyze the influence of coolant thermophysical parameters on the cooling effect. The results show that increasing the cell spacing appropriately has a positive cooling effect on submerged liquid-cooled battery packs. When the cell spacing is increased from 0 mm to 5 mm, the maximum temperature difference ΔTmax and the maximum temperature Tmax of the battery packs are reduced by 1.57 ℃ and 1.84 ℃, respectively. The coolant inlet position has a greater effect on ΔTmax and Tmax than the outlet position, and the inlet position has a greater effect on the flow field inside the battery box than the outlet position. ΔTmax and Tmax decrease with increase in the inlet flow rate. When the inlet flow rate increased from 0.2 m/s to 0.4 m/s, ΔTmax and Tmax decreased by 21.1% and 8.0%. Deionized water exhibits the best cooling effect, whereas silicone oil exhibits the worst cooling effect. Compared to silicone oil, deionized water reduced ΔTmax and Tmax by 5.17 ℃ and 5.99 ℃. Among the thermophysical parameters of the coolant, the order of importance and influence on the battery pack's cooling performance is as follows: density, specific heat capacity, thermal conductivity, and power viscosity. The findings of this study offer valuable insights into designing large-capacity battery pack-submerged liquid cooling system.

Key words: immersion cooling, battery thermal management, parameter sensitivity, numerical simulation

中图分类号: