储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 152-161.doi: 10.19799/j.cnki.2095-4239.2024.0638

• 储能系统与工程 • 上一篇    下一篇

关键因素对储能浸没式锂电池包温度特性影响的研究

李岳峰1,2(), 丁纬达1,2, 韦银涛1,2, 孙勇1,2, 饶庆1,2, 项峰1,2, 姚颖聪1   

  1. 1.运达能源科技集团股份有限公司,浙江 杭州 310012
    2.运达智储科技(河北)有限公司,河北 邯郸 056000
  • 收稿日期:2024-07-09 修回日期:2024-07-30 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 李岳峰 E-mail:lyf0304@mail.ustc.edu.cn
  • 作者简介:李岳峰(1995—),男,博士,高级工程师,研究方向为储能、发电机热管理及涡轮叶片主动热防护技术,E-mail: lyf0304@mail.ustc.edu.cn
  • 基金资助:
    浙江省科学技术厅项目(2023C01123)

Research on the influence of key factors on the temperature characteristics of energy storage immersing lithium-ion battery pack

Yuefeng LI1,2(), Weida DING1,2, Yintao WEI1,2, Yong SUN1,2, Qing RAO1,2, Feng XIANG1,2, Yingcong YAO1   

  1. 1.Windey Energy Technology Group Co. , Ltd. , Hangzhou 310012, Zhejiang, China
    2.Windey Innovolts Technology Co. , Ltd. , Handan 056000, Hebei, China
  • Received:2024-07-09 Revised:2024-07-30 Online:2025-01-28 Published:2025-02-25
  • Contact: Yuefeng LI E-mail:lyf0304@mail.ustc.edu.cn

摘要:

随着储能电池热管理技术的不断迭代和创新,直接浸没式液冷技术展现了极大的应用潜力。相比间接冷板液冷技术,直接浸没式液冷技术在电池换热和均温上取得了极大的突破。在目前,虽然关于电池浸没式冷却的研究层出不穷,但仍缺乏关键影响因素对于浸没式电池包温度特性研究的系统归纳和全面研究。因此,本工作以自研新型浸没式电池包系统为基础,通过数值仿真分别探究了冷却液类型、电芯发热量和流道结构对于浸没式系统温度特性的影响。研究发现:氟化液作为浸没冷却液具有最佳的温度性能表现,其次是硅油和矿物质油。决定冷却液性能的关键参数在于流体运动黏度;相比冷板式,浸没式在低中高充放倍率下均展现了更优异的冷却性能,且在中高电芯发热量时浸没式对于电池温度性能的提升更为明显。1 C条件下,浸没式电池包最高温度、最大温差和顶底最大温差分别降低了27.26 ℃、1.76 ℃和32.03 ℃;流道结构显著提高了电池包的温度性能;相比无流道,带流道结构的电池包最高温度、最大温差和顶底最大温差分别降低了3.34 ℃、2.65 ℃和1.54 ℃。主要是因为流道结构通过改变电池包内流线的空间分布从而改善了冷却液分布的均匀性。本研究为今后浸没式电池包的热设计及电芯和冷却液的选型提供了参考和热流场规律总结。

关键词: 储能电池, 浸没式冷却, 冷却液, 发热量, 流道

Abstract:

With the continuous iteration and innovation of the thermal management technology of energy storage batteries, direct immersing liquid cooling technology has shown immense application potential. Compared with the indirect cold plate liquid cooling technology, the direct immersing liquid cooling technology has significantly improved battery heat transfer and temperature equalization. Although there is a continuous emergence of relevant research on immersing battery pack cooling, systematic induction and comprehensive studies on the impact of key influencing factors on immersing battery systems remain insufficient. Therefore, the effects of coolant type, cell heat value, and flow channel on the temperature characteristics were investigated using numerical simulations based on a self-developed novel immersing battery pack system. The research indicated that the fluorinated solution exhibits the best temperature performance as immersing coolant, followed by silicone and mineral oils. The key parameter that determines the performance of the coolant is the fluid kinematic viscosity. Compared with the cold plate technology, the immersing technology showed better cooling performance at low, medium, and high charge and discharge ratios, more significantly in medium and high cell heat value conditions. The maximum temperature, maximum temperature difference, and maximum temperature difference between the top and bottom surfaces of the immersing battery pack decreased by 27.26 ℃, 1.76 ℃, and 32.03 ℃, respectively. The flow channel significantly improves the temperature performance of the battery pack. Compared with the battery pack without a flow channel, the maximum temperature, maximum temperature difference, and maximum temperature difference between the top and bottom surfaces of the battery pack with a flow channel decreased by 3.34 ℃, 2.65 ℃, and 1.54 ℃, respectively. It improves the uniformity of the coolant distribution by changing the spatial distribution of the flow lines in the battery pack. This research offers a reference and summarizes the heat flow field for the thermal design of immersing battery packs and the selections of cells and coolants for future applications.

Key words: energy storage battery, immersing cooling, liquid coolant, heat value, flow channel

中图分类号: