1 |
PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382. DOI: 10.1016/S0378-7753(02)00200-8.
|
2 |
JIAQIANG E, YUE M, CHEN J W, et al. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle[J]. Applied Thermal Engineering, 2018, 144: 231-241. DOI: 10.1016/j.applthermaleng.2018.08.064.
|
3 |
YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120307. DOI: 10.1016/j.ijheatmasstransfer.2020.120307.
|
4 |
LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118581. DOI: 10.1016/j.ijheatmasstransfer.2019.118581.
|
5 |
YATES M, AKRAMI M, JAVADI A A. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries[J]. Journal of Energy Storage, 2021, 33: 100913. DOI: 10.1016/j.est. 2019.100913.
|
6 |
XIE Y, LI H H, LI W, et al. Improving thermal performance of battery at high current rate by using embedded heat pipe system[J]. Journal of Energy Storage, 2022, 46: 103809. DOI: 10.1016/j.est.2021.103809.
|
7 |
WANG X M, XIE Y Q, DAY R, et al. Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack[J]. Energy, 2018, 156: 154-168. DOI: 10.1016/j.energy.2018.05.104.
|
8 |
CICCONI P, KUMAR P, VARSHNEY P. A support approach for the modular design of Li-ion batteries: A test case with PCM[J]. Journal of Energy Storage, 2020, 31: 101684. DOI: 10.1016/j.est.2020.101684.
|
9 |
NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143: 257-262. DOI: 10.1016/j.applthermaleng.2018.07.080.
|
10 |
LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[J]. Energy Conversion and Management, 2017, 150: 304-330. DOI: 10.1016/j.enconman.2017.08.016.
|
11 |
XIE Y Q, TANG J C, SHI S, et al. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials[J]. Energy Conversion and Management, 2017, 154: 562-575. DOI: 10.1016/j.enconman.2017.11.046.
|
12 |
袁松, 汪怡平, 苏楚奇, 等. 基于相变和液冷耦合的锂电池散热特性研究[J]. 电源技术, 2022, 46(10): 1127-1131. DOI: 10.3969/j.issn.1002-087X.2022.10.012.
|
|
YUAN S, WANG Y P, SU C Q, et al. Study on heat dissipation characteristics of Li-ion battery based on coupling of phase change materials and liquid cooling[J]. Chinese Journal of Power Sources, 2022, 46(10): 1127-1131. DOI: 10.3969/j.issn.1002-087X.2022.10.012.
|
13 |
LI P S, ZENG Q, MA M, et al. Numerical study of the performance of heat pipe-based thermal management system for power lithium battery[J]. Heat Transfer Research, 2023, 54(14): 63-77. DOI: 10.1615/heattransres.2023047361.
|
14 |
DENG Y W, FENG C L, E J Q, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review[J]. Applied Thermal Engineering, 2018, 142: 10-29. DOI: 10.1016/j.applthermaleng.2018.06.043.
|
15 |
FAN X, MENG C, YANG Y W, et al. Numerical optimization of the cooling effect of a bionic fishbone channel liquid cooling plate for a large prismatic lithium-ion battery pack with high discharge rate[J]. Journal of Energy Storage, 2023, 72: 108239. DOI: 10.1016/j.est.2023.108239.
|
16 |
SHENG L, SU L, ZHANG H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 141: 658-668. DOI: 10.1016/j.ijheatmasstransfer.2019.07.033.
|
17 |
ZHAO D, LEI Z G, AN C. Research on battery thermal management system based on liquid cooling plate with honeycomb-like flow channel[J]. Applied Thermal Engineering, 2023, 218: 119324. DOI: 10.1016/j.applthermaleng.2022.119324.
|
18 |
SHANG Z Z, QI H Z, LIU X T, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer, 2019, 130: 33-41. DOI: 10.1016/j.ijheatmasstransfer.2018.10.074.
|
19 |
唐程波, 锁要红, 何昭坤. 基于正弦函数的液冷板上流体流向对锂离子电池散热性能的影响[J]. 储能科学与技术, 2023, 12(8): 2547-2555. DOI: 10.19799/j.cnki.2095-4239.2023.0141.
|
|
TANG C B, SUO Y H, HE Z K. Effect of fluid-flow direction on heat dissipation from lithium-ion batteries based on sine-function cooling plate[J]. Energy Storage Science and Technology, 2023, 12(8): 2547-2555. DOI: 10.19799/j.cnki.2095-4239.2023.0141.
|
20 |
RAO Z H, WANG Q C, HUANG C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669. DOI: 10.1016/j.apenergy.2015.12.021.
|
21 |
YUN S, KWON J, CHO W, et al. Performance improvement of hot stamping die for patchwork blank using mixed cooling channel designs with straight and conformal channels[J]. Applied Thermal Engineering, 2020, 165: 114562. DOI: 10.1016/j.applthermaleng.2019.114562.
|
22 |
WANG J G, LU S, WANG Y Z, et al. Novel investigation strategy for mini-channel liquid-cooled battery thermal management system[J]. International Journal of Energy Research, 2020, 44(3): 1971-1985. DOI: 10.1002/er.5049.
|