1 |
GAO Y Z, ZHANG X, GUO B J, et al. Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3417-3429. DOI: 10.1109/TII.2019.2935326.
|
2 |
SU C, CHEN H J, WEN Z J. Prediction of remaining useful life for lithium-ion battery with multiple health indicators[J]. Eksploatacja i Niezawodność-Maintenance and Reliability, 2021, 23(1): 176-183. DOI: 10.17531/ein.2021.1.18.
|
3 |
LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3170-3180. DOI: 10.1109/TIE.2020.2973876.
|
4 |
黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. DOI: 10.19595/j.cnki.1000-6753.tces.210860.
|
|
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. DOI: 10.19595/j.cnki.1000-6753.tces.210860.
|
5 |
段双明, 杨耀微. 基于分数阶模型的锂电池SOC估计[J]. 电源技术, 2022, 46(8): 862-866. DOI: 10.3969/j.issn.1002-087X.2022.08.009.
|
|
DUAN S M, YANG Y W. State of charge estimation of lithium batteries based on fractional model[J]. Chinese Journal of Power Sources, 2022, 46(8): 862-866. DOI: 10.3969/j.issn.1002-087X.2022.08.009.
|
6 |
叶乙福. 基于数据驱动的锂离子电池剩余使用寿命预测方法研究[D]. 湖州: 湖州师范学院, 2022. DOI: 10.27946/d.cnki.ghzsf.2022.000150.
|
7 |
张效伟, 衣振晓, 王凯. 基于改进自适应蜜獾优化算法优化时间卷积网络的车载锂离子电池健康状态估计[J/OL]. 发电技术, 2024 [2024-07-22]. https://kns.cnki.net/kcms/detail/33.1405.TK.20240719. 1509.002.html.
|
8 |
史宏思,孙新伟,王凯. 基于电化学阻抗谱的锂离子电池健康状态估计 [J/OL]. 发电技术, 1-15[2024-07-15]. http://kns.cnki.net/kcms/detail/33.1405.tk.20240716.1502.008.html.
|
9 |
李彦梅, 刘惠汉, 张朝龙,等. 基于双高斯模型的锂电池剩余使用寿命预测方法[J]. 电气工程学报, 2022, 17(4): 32-40.
|
|
LI Y M, LIU H H, ZHANG C L, et al. Lithium-ion battery RUL prediction method based on double Gaussian model[J]. Journal of Electrical Engineering, 2022, 17(4): 32-40.
|
10 |
宋胜, 李云伍, 赵颖, 等. 锂离子电池片段数据的荷电状态估计研究[J]. 电源技术, 2022, 46(7): 734-738. DOI: 10.3969/j.issn.1002-087X.2022.07.008.
|
|
SONG S, LI Y W, ZHAO Y, et al. Research on SOC estimation based on fragment data of lithium-ion battery[J]. Chinese Journal of Power Sources, 2022, 46(7): 734-738. DOI: 10.3969/j.issn.1002-087X.2022.07.008.
|
11 |
YIN L T, BJÖRNEKLETT A, SÖDERLUND E, et al. Analyzing and mitigating battery ageing by self-heating through a coupled thermal-electrochemical model of cylindrical Li-ion cells[J]. Journal of Energy Storage, 2021, 39: 102648. DOI: 10.1016/j.est.2021.102648.
|
12 |
GUHA A, PATRA A. Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1836-1849. DOI: 10.1109/TIM. 2018.2809138.
|
13 |
雷克兵, 陈自强. 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报(工学版), 2021, 55(10): 1978-1985, 2001. DOI: 10.3785/j.issn.1008-973X.2021.10.020.
|
|
LEI K B, CHEN Z Q. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(10): 1978-1985, 2001. DOI: 10.3785/j.issn.1008-973X.2021.10.020.
|
14 |
刘金凤, 陈浩玮, HERBERT Ho-Ching Lu. 基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究[J]. 电子与信息学报, 2023, 45(3): 1111-1120.
|
|
LIU J F, CHEN H W, HERBERT H-C L. Li-ion batteries life prediction based on variational modal decomposition and DAIPSO-GPR to solve the capacity regeneration phenomenon[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1111-1120.
|
15 |
叶鑫, 王海瑞, 李远博, 等. 基于优化VMD和集成模型的锂电池寿命预测[J]. 化工自动化及仪表, 2023, 50(4): 500-506, 563. DOI: 10.20030/j.cnki.1000-3932.202304015.
|
|
YE X, WANG H R, LI Y B, et al. Remaining life prediction method for lithium batteries based on optimized VMD and integrated model[J]. Control and Instruments in Chemical Industry, 2023, 50(4): 500-506, 563. DOI: 10.20030/j.cnki.1000-3932.202304015.
|
16 |
刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. DOI: 10.19799/j.cnki.2095-4239.2022.0491.
|
|
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. DOI: 10.19799/j.cnki.2095-4239.2022.0491.
|
17 |
陈欣, 李云伍, 梁新成, 等. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239.2023.0323.
|
|
CHEN X, LI Y W, LIANG X C, et al. Battery health state estimation of combined Transformer-GRU based on modal decomposition[J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239. 2023.0323.
|
18 |
陈翔, 夏飞. 基于CEEMD-AKF的锂电池剩余使用寿命预测方法[J]. 哈尔滨理工大学学报, 2023, 28(3): 28-36. DOI: 10.15938/j.jhust.2023.03.004.
|
|
CHEN X, XIA F. Remaining useful life predictionmethod for lithium-ion batteries based on CEEMD-AKF[J]. Journal of Harbin University of Science and Technology, 2023, 28(3): 28-36. DOI: 10.15938/j.jhust.2023.03.004.
|
19 |
宋兴海, 张小乾, 梁惠施, 等. 基于SDAE-Transformer-ECA网络的锂电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(10): 3181-3190. DOI: 10.19799/j.cnki.2095-4239.2023.0369.
|
|
SONG X H, ZHANG X Q, LIANG H S, et al. Predicting the remaining service life of lithium batteries based on the SDAE-transformer-ECA network[J]. Energy Storage Science and Technology, 2023, 12(10): 3181-3190. DOI: 10.19799/j.cnki.2095-4239.2023.0369.
|
20 |
唐梓巍, 师玉璞, 张雨禅, 等. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812.
|
|
TANG Z W, SHI Y P, ZHANG Y C, et al. Prediction of lithium-ion battery capacity degradation trajectory based on Informer[J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812.
|