1 |
HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. DOI: 10.1016/j.rser.2017.05.001.
|
2 |
SHRIVASTAVA P, SOON T K, BIN IDRIS M Y I, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113: DOI: 10.1016/j.rser. 2019.06.040.
|
3 |
WU L X, LIU K, PANG H. Evaluation and observability analysis of an improved reduced-order electrochemical model for lithium-ion battery[J]. Electrochimica Acta, 2021, 368: DOI: 10.1016/j.electacta.2020.137604.
|
4 |
LIU Z Y, ZHAO J J, WANG H, et al. A new lithium-ion battery SOH estimation method based on an indirect enhanced health indicator and support vector regression in PHMs[J]. Energies, 2020, 13(4): DOI: 10.3390/en13040830.
|
5 |
HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. DOI: 10.1016/j.joule.2019.11.018.
|
6 |
ASHWIN T R, CHUNG Y M, WANG J H. Capacity fade modelling of lithium-ion battery under cyclic loading conditions[J]. Journal of Power Sources, 2016, 328: 586-598. DOI: 10.1016/j.jpowsour. 2016.08.054.
|
7 |
MISHRA M, MARTINSSON J, RANTATALO M, et al. Bayesian hierarchical model-based prognostics for lithium-ion batteries[J]. Reliability Engineering & System Safety, 2018, 172: 25-35. DOI: 10.1016/j.ress.2017.11.020.
|
8 |
POLA D A, NAVARRETE H F, ORCHARD M E, et al. Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles[J]. IEEE Transactions on Reliability, 2015, 64(2): 710-720. DOI: 10.1109/TR.2014.2385069.
|
9 |
MO B H, YU J S, TANG D Y, et al. A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Ottawa, ON, Canada. IEEE, 2016: 1-5. DOI: 10.1109/ICPHM. 2016.7542847.
|
10 |
YE L H, CHEN S J, SHI Y F, et al. Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter[J]. International Journal of Electrochemical Science, 2023, 18(5): DOI: 10.1016/j.ijoes. 2023.100122.
|
11 |
ZHOU Y P, HUANG M H. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65: 265-273. DOI: 10.1016/j.microrel.2016.07.151.
|
12 |
ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with box-cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585-1597. DOI: 10.1109/TIE.2018.2808918.
|
13 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI: 10.1109/TVT.2018.2805189.
|
14 |
REN L, ZHAO L, HONG S, et al. Remaining useful life prediction for lithium-ion battery: A deep learning approach[J]. IEEE Access, 2018, 6: 50587-50598. DOI: 10.1109/ACCESS.2018.2858856.
|
15 |
QIN X L, ZHAO Q, ZHAO H B, et al. Prognostics of remaining useful life for lithium-ion batteries based on a feature vector selection and relevance vector machine approach[C]//2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, TX, USA. IEEE, 2017: 1-6. DOI: 10.1109/ICPHM.2017.7998297.
|
16 |
NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688. DOI: 10.1016/j.jpowsour.2012.11.146.
|
17 |
WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44. DOI: 10.1016/j.jpowsour.2013.02.012.
|
18 |
LVOVICH V, WU J, BENNETT W, et al. Applications of AC impedance spectroscopy as characterization and diagnostic tool in Li-metal battery cells[J]. ECS Transactions, 2014, 58(22): 1-14. DOI: 10.1149/05822.0001ecst.
|
19 |
HUANG J, LI Z, ZHANG J B. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging[J]. Journal of Power Sources, 2015, 273: 1098-1102. DOI: 10.1016/j.jpowsour.2014.07.067.
|
20 |
TRAN M K, MATHEW M, JANHUNEN S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters[J]. Journal of Energy Storage, 2021, 43: DOI: 10.1016/j.est.2021.103252.
|
21 |
DING X F, ZHANG D H, CHENG J W, et al. An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles[J]. Applied Energy, 2019, 254: 113615. DOI: 10.1016/j.apenergy.2019.113615.
|
22 |
ZHANG X Q, ZHANG W P, LEI G Y. A review of Li-ion battery equivalent circuit models[J]. Transactions on Electrical and Electronic Materials, 2016, 17(6): 311-316. DOI: 10.4313/teem.2016.17.6.311.
|
23 |
PLETT G L. High-performance battery-pack power estimation using a dynamic cell model[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1586-1593. DOI: 10.1109/TVT.2004.832408.
|
24 |
LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. DOI: 10.1016/j.rser.2019.109254.
|
25 |
VANEM E, SALUCCI C B, BAKDI A, et al. Data-driven state of health modelling—A review of state of the art and reflections on applications for maritime battery systems[J]. Journal of Energy Storage, 2021, 43: 103158. DOI: 10.1016/j.est.2021.103158.
|
26 |
YANG D D, LU J Y, DONG H L, et al. Pipeline signal feature extraction method based on multi-feature entropy fusion and local linear embedding[J]. Systems Science & Control Engineering, 2022, 10(1): 407-416. DOI: 10.1080/21642583. 2022.2063202.
|
27 |
LIANG C M, LI Y W, LIU Y H, et al. Segmentation and weight prediction of grape ear based on SFNet-ResNet18[J]. Systems Science & Control Engineering, 2022, 10(1): 722-732. DOI: 10.1080/21642583.2022.2110541.
|
28 |
LI X G, FENG S, HOU N, et al. Surface microseismic data denoising based on sparse autoencoder and Kalman filter[J]. Systems Science & Control Engineering, 2022, 10(1): 616-628. DOI: 10.1080/21642583.2022.2087786.
|
29 |
FINE T L. Fundamentals of artificial neural networks[book reviews[J]. IEEE Transactions on Information Theory, 1996, 42(4): 1322. DOI: 10.1109/TIT.1996.508868.
|
30 |
WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 2017, 5: 21286-21295. DOI: 10.1109/ACCESS.2017.2759094.
|
31 |
SHE C Q, LI Y, ZOU C F, et al. Offline and online blended machine learning for lithium-ion battery health state estimation[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1604-1618. DOI: 10.1109/TTE.2021.3129479.
|
32 |
陈欣, 李云伍, 梁新成, 等. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239.2023.0323.
|
|
CHEN X, LI Y W, LIANG X C, et al. Battery health state estimation of combined Transformer-GRU based on modal decomposition[J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239. 2023.0323.
|
33 |
毛百海, 覃吴, 肖显斌, 等. 基于LSTM&GRU-Attention多联合模型的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3519-3527. DOI: 10.19799/j.cnki.2095-4239.2023.0514.
|
|
MAO B H, QIN W, XIAO X B, et al. SOH estimation of lithium-ion batteries based on LSTM & GRU-Attention multijoint model[J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527. DOI: 10.19799/j.cnki.2095-4239.2023.0514.
|
34 |
申小雨, 尹丛勃. 基于卷积Fastformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(3): 990-999. DOI: 10.19799/j.cnki.2095-4239.2023.0735.
|
|
SHEN X Y, YIN C B. SOH estimation of lithium-ion batteries using a convolutional Fastformer[J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. DOI: 10.19799/j.cnki.2095-4239.2023.0735.
|
35 |
HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. DOI: 10.1016/j.jpowsour.2011.08.040.
|
36 |
XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. DOI: 10.1016/j.microrel.2012.12.003.
|
37 |
WILLIARD N, HE W, OSTERMAN M, et al. Comparative analysis of features for determining state of health in lithium-ion batteries[J]. International Journal of Prognostics and Health Management, 2020, 4(1): DOI: 10.36001/ijphm.2013.v4i1.1437.
|