储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2791-2802.doi: 10.19799/j.cnki.2095-4239.2024.0145
收稿日期:2024-02-23
修回日期:2024-03-01
出版日期:2024-08-28
发布日期:2024-08-15
通讯作者:
许磊
E-mail:yufengh_sau@sina.com;syfri_xulei@126.com
作者简介:黄煜峰(1984—)女,博士,副教授,研究方向为人工智能、自动驾驶,E-mail:yufengh_sau@sina.com;
基金资助:
Yufeng HUANG1(
), Huanchao LIANG1, Lei XU2(
)
Received:2024-02-23
Revised:2024-03-01
Online:2024-08-28
Published:2024-08-15
Contact:
Lei XU
E-mail:yufengh_sau@sina.com;syfri_xulei@126.com
摘要:
回顾了锂离子电池健康状态(state of health, SOH)的预测方法,本文提出了一种基于卡尔曼滤波器(Kalman filter)优化的Transformer网络,利用历史数据预测电池SOH。首先,通过添加高斯噪声、自动编码器重构对电池数据进行预处理,去除电池数据中原始噪声并强化数据特征;其次,利用提出的KF-Transformer(Kalman filter-transformer)算法模型提取电池健康状态变化特征,使得Transformer网络能够更好地捕捉电池健康状态的非线性变化;最后,通过线性层完成电池健康状态变化特征到电池健康状态预测的映射,得到锂离子电池健康状态的预测结果。本文使用3个不同充放电策略、不同测试环境下的锂离子电池数据集[分别为美国国家航空航天局(NASA)数据集、马里兰大学CALCE CS2数据集和CALCE CX2数据集]来验证本文提出的锂离子电池健康状态预测算法的鲁棒性和准确性,且本文算法对于SOH不同状态、不同循环次数的预测均具有较好的结果。研究结果显示,本文方法的平均绝对百分比误差(mean absolute percentage error, MAPE)能控制在2%,决定系数(R-square, R2)为0.987,并与多层感知机(MLP, multilayer perceptron)、循环神经网络(RNN, recurrent neura network)、长短时记忆(LSTM, long short-term memory)、门控循环单元(GRU, gated recurrent unit)进行比较,证明了本文方法的优越性。
中图分类号:
黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802.
Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802.
表1
NASA和CALCE数据集情况"
| 参数 | NASA | CALCE CS2 | CALCE CX2 |
|---|---|---|---|
| 电池容量 | 2000 mAh | 1100 mAh | 1350 mAh |
| 电芯材质 | LiNiMnCo/石墨 | LiCoO2 | LiCoO2 |
| 标称电压 | 3.7 V | 3.7 V | 3.7 V |
| 测试温度 | 24 ℃ | 1 ℃ | 0.5 ℃ |
| 充/放电截止电压 | 4.2V/2.5 V | 4.2V/2.7 V | 4.2V/2.7 V |
| 充/放电速率 | 2 A(1C) | 1.1 A(1C) | 0.675 A(0.5C) |
| 电池编号 | B0005, B0006, B0007, B0018 | CS2-35, CS2-36, CS2-37, CS2-38 | CX2-34, CX2-36, CX2-37, CX2-38 |
| 1 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. DOI: 10.1016/j.rser.2017.05.001. |
| 2 | SHRIVASTAVA P, SOON T K, BIN IDRIS M Y I, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113: DOI: 10.1016/j.rser. 2019.06.040. |
| 3 | WU L X, LIU K, PANG H. Evaluation and observability analysis of an improved reduced-order electrochemical model for lithium-ion battery[J]. Electrochimica Acta, 2021, 368: DOI: 10.1016/j.electacta.2020.137604. |
| 4 | LIU Z Y, ZHAO J J, WANG H, et al. A new lithium-ion battery SOH estimation method based on an indirect enhanced health indicator and support vector regression in PHMs[J]. Energies, 2020, 13(4): DOI: 10.3390/en13040830. |
| 5 | HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. DOI: 10.1016/j.joule.2019.11.018. |
| 6 | ASHWIN T R, CHUNG Y M, WANG J H. Capacity fade modelling of lithium-ion battery under cyclic loading conditions[J]. Journal of Power Sources, 2016, 328: 586-598. DOI: 10.1016/j.jpowsour. 2016.08.054. |
| 7 | MISHRA M, MARTINSSON J, RANTATALO M, et al. Bayesian hierarchical model-based prognostics for lithium-ion batteries[J]. Reliability Engineering & System Safety, 2018, 172: 25-35. DOI: 10.1016/j.ress.2017.11.020. |
| 8 | POLA D A, NAVARRETE H F, ORCHARD M E, et al. Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles[J]. IEEE Transactions on Reliability, 2015, 64(2): 710-720. DOI: 10.1109/TR.2014.2385069. |
| 9 | MO B H, YU J S, TANG D Y, et al. A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Ottawa, ON, Canada. IEEE, 2016: 1-5. DOI: 10.1109/ICPHM. 2016.7542847. |
| 10 | YE L H, CHEN S J, SHI Y F, et al. Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter[J]. International Journal of Electrochemical Science, 2023, 18(5): DOI: 10.1016/j.ijoes. 2023.100122. |
| 11 | ZHOU Y P, HUANG M H. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65: 265-273. DOI: 10.1016/j.microrel.2016.07.151. |
| 12 | ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with box-cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585-1597. DOI: 10.1109/TIE.2018.2808918. |
| 13 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI: 10.1109/TVT.2018.2805189. |
| 14 | REN L, ZHAO L, HONG S, et al. Remaining useful life prediction for lithium-ion battery: A deep learning approach[J]. IEEE Access, 2018, 6: 50587-50598. DOI: 10.1109/ACCESS.2018.2858856. |
| 15 | QIN X L, ZHAO Q, ZHAO H B, et al. Prognostics of remaining useful life for lithium-ion batteries based on a feature vector selection and relevance vector machine approach[C]//2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, TX, USA. IEEE, 2017: 1-6. DOI: 10.1109/ICPHM.2017.7998297. |
| 16 | NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688. DOI: 10.1016/j.jpowsour.2012.11.146. |
| 17 | WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44. DOI: 10.1016/j.jpowsour.2013.02.012. |
| 18 | LVOVICH V, WU J, BENNETT W, et al. Applications of AC impedance spectroscopy as characterization and diagnostic tool in Li-metal battery cells[J]. ECS Transactions, 2014, 58(22): 1-14. DOI: 10.1149/05822.0001ecst. |
| 19 | HUANG J, LI Z, ZHANG J B. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging[J]. Journal of Power Sources, 2015, 273: 1098-1102. DOI: 10.1016/j.jpowsour.2014.07.067. |
| 20 | TRAN M K, MATHEW M, JANHUNEN S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters[J]. Journal of Energy Storage, 2021, 43: DOI: 10.1016/j.est.2021.103252. |
| 21 | DING X F, ZHANG D H, CHENG J W, et al. An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles[J]. Applied Energy, 2019, 254: 113615. DOI: 10.1016/j.apenergy.2019.113615. |
| 22 | ZHANG X Q, ZHANG W P, LEI G Y. A review of Li-ion battery equivalent circuit models[J]. Transactions on Electrical and Electronic Materials, 2016, 17(6): 311-316. DOI: 10.4313/teem.2016.17.6.311. |
| 23 | PLETT G L. High-performance battery-pack power estimation using a dynamic cell model[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1586-1593. DOI: 10.1109/TVT.2004.832408. |
| 24 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. DOI: 10.1016/j.rser.2019.109254. |
| 25 | VANEM E, SALUCCI C B, BAKDI A, et al. Data-driven state of health modelling—A review of state of the art and reflections on applications for maritime battery systems[J]. Journal of Energy Storage, 2021, 43: 103158. DOI: 10.1016/j.est.2021.103158. |
| 26 | YANG D D, LU J Y, DONG H L, et al. Pipeline signal feature extraction method based on multi-feature entropy fusion and local linear embedding[J]. Systems Science & Control Engineering, 2022, 10(1): 407-416. DOI: 10.1080/21642583. 2022.2063202. |
| 27 | LIANG C M, LI Y W, LIU Y H, et al. Segmentation and weight prediction of grape ear based on SFNet-ResNet18[J]. Systems Science & Control Engineering, 2022, 10(1): 722-732. DOI: 10.1080/21642583.2022.2110541. |
| 28 | LI X G, FENG S, HOU N, et al. Surface microseismic data denoising based on sparse autoencoder and Kalman filter[J]. Systems Science & Control Engineering, 2022, 10(1): 616-628. DOI: 10.1080/21642583.2022.2087786. |
| 29 | FINE T L. Fundamentals of artificial neural networks[book reviews[J]. IEEE Transactions on Information Theory, 1996, 42(4): 1322. DOI: 10.1109/TIT.1996.508868. |
| 30 | WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 2017, 5: 21286-21295. DOI: 10.1109/ACCESS.2017.2759094. |
| 31 | SHE C Q, LI Y, ZOU C F, et al. Offline and online blended machine learning for lithium-ion battery health state estimation[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1604-1618. DOI: 10.1109/TTE.2021.3129479. |
| 32 | 陈欣, 李云伍, 梁新成, 等. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239.2023.0323. |
| CHEN X, LI Y W, LIANG X C, et al. Battery health state estimation of combined Transformer-GRU based on modal decomposition[J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239. 2023.0323. | |
| 33 | 毛百海, 覃吴, 肖显斌, 等. 基于LSTM&GRU-Attention多联合模型的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3519-3527. DOI: 10.19799/j.cnki.2095-4239.2023.0514. |
| MAO B H, QIN W, XIAO X B, et al. SOH estimation of lithium-ion batteries based on LSTM & GRU-Attention multijoint model[J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527. DOI: 10.19799/j.cnki.2095-4239.2023.0514. | |
| 34 | 申小雨, 尹丛勃. 基于卷积Fastformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(3): 990-999. DOI: 10.19799/j.cnki.2095-4239.2023.0735. |
| SHEN X Y, YIN C B. SOH estimation of lithium-ion batteries using a convolutional Fastformer[J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. DOI: 10.19799/j.cnki.2095-4239.2023.0735. | |
| 35 | HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. DOI: 10.1016/j.jpowsour.2011.08.040. |
| 36 | XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. DOI: 10.1016/j.microrel.2012.12.003. |
| 37 | WILLIARD N, HE W, OSTERMAN M, et al. Comparative analysis of features for determining state of health in lithium-ion batteries[J]. International Journal of Prognostics and Health Management, 2020, 4(1): DOI: 10.36001/ijphm.2013.v4i1.1437. |
| [1] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
| [2] | 雷晶晶, 李泽皓, 陈斌斌, 黄登高. 基于电化学阻抗谱的电芯内部温度估计研究[J]. 储能科学与技术, 2024, 13(8): 2823-2834. |
| [3] | 陈悦林, 马宏忠, 朱沐雨, 宣文婧, 王思涵. 磷酸铁锂电池组在电网调峰工况下的液冷技术研究[J]. 储能科学与技术, 2024, 13(8): 2704-2712. |
| [4] | 何忆南, 张锴, 周俊武, 王欣杨, 郑百林. 外部载荷对硅电极锂电池循环性能的影响[J]. 储能科学与技术, 2024, 13(8): 2559-2569. |
| [5] | 巩文豪, 李蒙, 张涛, 张若涛, 刘艳侠. 高能量长续航无人机电池的开发及制备[J]. 储能科学与技术, 2024, 13(8): 2550-2558. |
| [6] | 陈国贺, 吕培召, 李孟涵, 饶中浩. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. |
| [7] | 李昌豪, 汪书苹, 杨献坤, 曾子琪, 周昕玥, 谢佳. 低温型锂离子电池中的非水电解质研究进展[J]. 储能科学与技术, 2024, 13(7): 2286-2299. |
| [8] | 刘承鑫, 李梓衡, 陈泽宇, 李鹏祥, 陶庆一. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. |
| [9] | 陆洋, 闫帅帅, 马骁, 刘誌, 章伟立, 刘凯. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242. |
| [10] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
| [11] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
| [12] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
| [13] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
| [14] | 李征, 杨振忠, 王琼, 胡仁宗. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. |
| [15] | 程广玉, 刘新伟, 刘硕, 顾海涛, 王可. 调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升[J]. 储能科学与技术, 2024, 13(7): 2171-2180. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||