储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3094-3102.doi: 10.19799/j.cnki.2095-4239.2024.0287

• AI辅助先进电池设计与应用专刊 • 上一篇    

基于条件神经网络的质子交换膜燃料电池的老化性能预测

李从心1(), 岳美玲2(), 李昕彤2, 熊庆辉1, 刘孝艳1   

  1. 1.国家电投集团氢能科技发展有限公司,北京 102600
    2.北京交通大学机械与电子控制工程学院,北京 100044
  • 收稿日期:2024-04-01 修回日期:2024-07-17 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 岳美玲 E-mail:setforth@163.com;yueml@bjtu.edu.cn
  • 作者简介:李从心(1979—),男,博士研究生,高级工程师,研究方向为新能源汽车动力系统算法优化与性能提升,E-mail:setforth@163.com
  • 基金资助:
    国家重点研发计划(2022YFB2502401)

Proton exchange membrane fuel cell aging performance prediction based on conditional neural networks

Congxin LI1(), Meiling YUE2(), Xintong LI2, Qinghui XIONG1, Xiaoyan LIU1   

  1. 1.State Power Investment Corporation Hydrogen Energy Tech Co. Ltd. , Beijing 102600, China
    2.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2024-04-01 Revised:2024-07-17 Online:2024-09-28 Published:2024-09-20
  • Contact: Meiling YUE E-mail:setforth@163.com;yueml@bjtu.edu.cn

摘要:

在积极推进“双碳”目标的背景下,氢能的发展迎来了前所未有的机遇。作为绿色交通变革的重要一环,燃料电池汽车在减碳和实现碳中和方面发挥着关键作用,同时也成为新能源汽车研究的焦点。提高燃料电池汽车的智能化程度,通过机器学习算法不断优化性能,已成为解决燃料电池汽车问题的重要途径。质子交换膜燃料电池作为燃料电池的核心技术之一,其耐用性问题依然是制约其商业化和市场普及的主要障碍。鉴于燃料电池的非线性和动态特性,以及运行条件的不断变化,准确预测其老化性能极具挑战。本工作提出一种基于条件卷积神经网络的新型燃料电池老化性能预测模型。该模型结合线性趋势和非线性动态特征预测,通过递归方法迭代预测燃料电池的老化性能。实验结果验证了本模型在长期性能预测上的高准确性,对于增强燃料电池系统的可靠性和效率具有重要的实际意义。

关键词: 燃料电池, 机器学习, 神经网络, 时间序列预测

Abstract:

In the context of actively pursuing the "dual carbon" goals, the advancement of hydrogen energy has experienced unprecedented opportunities. As a vital component of the green transportation revolution, fuel cell vehicles play a key role in carbon reduction and achieving carbon neutrality. Such vehicles have also become a focus of research on new energy vehicles. Improving the intelligence of fuel cell vehicles and continuously optimizing their performance through machine learning algorithms have become important ways to enhance the efficiency of such vehicles. Proton exchange membrane fuel cells, one of the core technologies of fuel cells, continue to encounter significant challenges in commercialization and market adoption due to durability issues. Accurately predicting the aging performance of fuel cells is highly challenging due to their nonlinearity and dynamic characteristics, coupled with their ever-changing operating conditions. This paper proposes a novel fuel cell performance prediction model based on conditional convolutional neural networks. The proposed model combines linear trends and nonlinear dynamic feature predictions to iteratively forecast the aging performance of fuel cells using a recursive method. The experimental results confirmed the high accuracy of this model in long-term performance prediction, instilling confidence in its practical implications for enhancing the reliability and efficiency of fuel cell systems.

Key words: fuel cell, machine learning, neural network, time series forecasting

中图分类号: