1 |
黄沙, 李亚新. 基于计算机软件的燃料电池混合储能系统分析[J]. 储能科学与技术, 2024, 13(4): 1350-1352. DOI: 10.19799/j.cnki. 2095-4239.2024.0281.
|
|
HUANG S, LI Y X. Analysis of fuel cell hybrid energy storage system based on computer software[J]. Energy Storage Science and Technology, 2024, 13(4): 1350-1352. DOI: 10.19799/j.cnki. 2095-4239.2024.0281.
|
2 |
李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39(8): 2365-2375. DOI: 10.13334/j.0258-8013.pcsee.181308.
|
|
LI Q, LIU J W, CHEN W R. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2019, 39(8): 2365-2375. DOI: 10.13334/j.0258-8013.pcsee.181308.
|
3 |
BRESSEL M, HILAIRET M, HISSEL D, et al. Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2569-2577. DOI: 10.1109/TIE.2016.2519328.
|
4 |
JOUIN M, GOURIVEAU R, HISSEL D, et al. Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[J]. IEEE Transactions on Reliability, 2016, 65(1): 336-349. DOI: 10.1109/TR.2015. 2454499.
|
5 |
张雪霞, 高雨璇, 陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报, 2020, 55(2): 417-427. DOI: 10.3969/j.issn.0258-2724.20180016.
|
|
ZHANG X X, GAO Y X, CHEN W R. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. DOI: 10.3969/j.issn.0258-2724.20180016.
|
6 |
HE W B, LIU T, MING W Y, et al. Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114193. DOI: 10.1016/j.rser.2023.114193.
|
7 |
ZHOU D M, AL-DURRA A, ZHANG K, et al. Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology[J]. Journal of Power Sources, 2018, 399: 314-328. DOI: 10.1016/j.jpowsour.2018.06.098.
|
8 |
MORANDO S, JEMEI S, HISSEL D, et al. Proton exchange membrane fuel cell ageing forecasting algorithm based on Echo State Network[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1472-1480. DOI: 10.1016/j.ijhydene.2016.05.286.
|
9 |
MA R, YANG T, BREAZ E, et al. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[J]. Applied Energy, 2018, 231: 102-115. DOI: 10.1016/j.apenergy.2018.09.111.
|
10 |
曾其权, 罗马吉, 杨印龙, 等. 基于LSTM-UPF混合驱动方法的燃料电池寿命预测[J]. 储能科学与技术, 2024, 13(3): 963-970. DOI: 10.19799/j.cnki.2095-4239.2023.0705.
|
|
ZENG Q Q, LUO M J, YANG Y L, et al. Life prediction of fuel cells based on the LSTM-UPF hybrid method[J]. Energy Storage Science and Technology, 2024, 13(3): 963-970. DOI: 10.19799/j.cnki.2095-4239.2023.0705.
|
11 |
ZHANG Z D, WANG Y X, HE H W, et al. A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell[J]. Applied Energy, 2021, 304: 117841. DOI: 10.1016/j.apenergy.2021.117841.
|
12 |
WANG C, LI Z L, OUTBIB R, et al. A novel long short-term memory networks-based data-driven prognostic strategy for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10395-10408. DOI: 10.1016/j.ijhydene.2022.01.121.
|
13 |
MA T C, ZHANG Z L, LIN W K, et al. Impedance prediction model based on convolutional neural networks methodology for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18534-18545. DOI: 10.1016/j.ijhydene.2021.02.204.
|
14 |
HUO W W, LI W E, ZHANG Z H, et al. Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection[J]. Energy Conversion and Management, 2021, 243: 114367. DOI: 10.1016/j.enconman.2021.114367.
|
15 |
LIU F F, GAO Z L, SU J Z, et al. Understanding the process of carbon corrosion and its impact on performance degradation during simulated start-stop operations for the proton exchange membrane fuel cell[J]. Electrochimica Acta, 2023, 468: 143193. DOI: 10.1016/j.electacta.2023.143193.
|
16 |
PAN M Z, PAN C J, LI C, et al. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110771. DOI: 10.1016/j.rser.2021. 110771.
|
17 |
姚颖方, 刘建国, 邹志刚. 燃料电池膜电极衰减机制及其抗老化策略[J]. 电化学, 2018, 24(6): 664-676. DOI: 10.13208/j.electrochem. 180853.
|
|
YAO Y F, LIU J G, ZOU Z G. Degradation mechanism and anti-aging strategies of membrane electrode assembly of fuel cells[J]. Journal of Electrochemistry, 2018, 24(6): 664-676. DOI: 10. 13208/j.electrochem.180853.
|
18 |
YUAN H, DAI H F, MING P W, et al. Understanding dynamic behavior of proton exchange membrane fuel cell in the view of internal dynamics based on impedance[J]. Chemical Engineering Journal, 2022, 431: 134035. DOI: 10.1016/j.cej.2021.134035.
|
19 |
BENAGGOUNE K, YUE M L, JEMEI S, et al. A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell[J]. Applied Energy, 2022, 313: 118835. DOI: 10.1016/j.apenergy.2022.118835.
|
20 |
YUE M L, ZHANG X, TENG T, et al. Trend-focused dynamic degradation prediction based on echo state networks in automotive fuel cells[J]. Energy Science & Engineering, 2024, 12(4): 1462-1471. DOI: 10.1002/ese3.1669.
|