1 |
LIU Z, DANG X J, JING B Q, et al. A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter[J]. Electric Power Systems Research, 2019, 177: 105951. DOI: 10.1016/j.epsr.2019.105951.
|
2 |
CHEN K, ZHOU S Y, LIU K, et al. State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine[J]. 2023, 158(10): 104110. DOI: 10.1063/5.0139376.
|
3 |
ZHOU W L, ZHENG Y P, PAN Z J, et al. Review on the battery model and SOC estimation method[J]. Processes, 2021, 9(9): 1685. DOI: 10.3390/pr9091685.
|
4 |
LEONORI S, BALDINI L, RIZZI A, et al. A physically inspired equivalent neural network circuit model for SoC estimation of electrochemical cells[J]. Energies, 2021, 14(21): 7386. DOI: 10.3390/en14217386.
|
5 |
BUCHICCHIO E, DE ANGELIS A, SANTONI F, et al. Battery SOC estimation from EIS data based on machine learning and equivalent circuit model[J]. Energy, 2023, 283: 128461. DOI: 10.1016/j.energy.2023.128461.
|
6 |
李伟, 刘伟嵬, 邓业林. 基于扩展卡尔曼滤波的锂离子电池荷电状态估计[J]. 中国机械工程, 2020, 31(3): 321-327, 343. DOI: 10.3969/j.issn.1004-132X.2020.03.010.
|
|
LI W, LIU W W, DENG Y L. SOC estimation for lithium-ion batteries based on EKF[J]. China Mechanical Engineering, 2020, 31(3): 321-327, 343. DOI: 10.3969/j.issn.1004-132X.2020.03.010.
|
7 |
HIDALGO-REYES J I, GÓMEZ-AGUILAR J F, ALVARADO-MARTÍNEZ V M, et al. Battery state-of-charge estimation using fractional extended Kalman filter with Mittag-Leffler memory[J]. Alexandria Engineering Journal, 2020, 59(4): 1919-1929. DOI: 10.1016/j.aej.2019.12.006.
|
8 |
安治国, 田茂飞, 赵琳, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(5): 856-861. DOI: 10.12028/j.issn.2095-4239.2019.0113.
|
|
AN Z G, TIAN M F, ZHAO L, et al. SOC estimation of lithium battery based on adaptive untracked Kalman filter[J]. Energy Storage Science and Technology, 2019, 8(5): 856-861. DOI: 10.12028/j.issn.2095-4239.2019.0113.
|
9 |
ZHENG L F, ZHU J G, WANG G X, et al. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter[J]. Energy, 2018, 158: 1028-1037. DOI: 10.1016/j.energy.2018.06.113.
|
10 |
WANG S L, JIA X Y, TAKYI-ANINAKWA P, et al. Review—Optimized particle filtering strategies for high-accuracy state of charge estimation of LIBs[J]. Journal of the Electrochemical Society, 2023, 170(5): 050514. DOI: 10.1149/1945-7111/acd148.
|
11 |
WANG K, FENG X, PANG J B, et al. State of charge (SOC) estimation of lithium-ion battery based on adaptive square root unscented Kalman filter[J]. International Journal of Electrochemical Science, 2020, 15(9): 9499-9516. DOI: 10.20964/2020.09.84.
|
12 |
GUO F, HU G D, XIANG S, et al. A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters[J]. Energy, 2019, 178: 79-88. DOI: 10.1016/j.energy.2019.04.126.
|
13 |
MENG J H, STROE D I, RICCO M, et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717-7727. DOI: 10.1109/TIE.2018. 2880668.
|
14 |
陈德海, 王超, 朱正坤, 等. 交互多模型无迹卡尔曼滤波算法预测锂电池SOC[J]. 储能科学与技术, 2020, 9(1): 257-265. DOI: 10.19799/j.cnki.2095-4239.2019.0207.
|
|
CHEN D H, WANG C, ZHU Z K, et al. Lithium battery state-of-charge estimation based on interactive multimodel unscented Kalman filter Algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 257-265. DOI: 10.19799/j.cnki.2095-4239.2019.0207.
|
15 |
HE H W, XIONG R, FAN J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598. DOI: 10.3390/en4040582.
|
16 |
LIANG Y W, WANG S L, FAN Y C, et al. An error covariance correction-adaptive extended Kalman filter based on piecewise forgetting factor recursive least squares method for the state-of-charge estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107629. DOI: 10.1016/j.est.2023.107629.
|
17 |
FENG S, LI X G, ZHANG S, et al. A review: State estimation based on hybrid models of Kalman filter and neural network[J]. Systems Science & Control Engineering, 2023, 11(1). DOI: 10.1080/21642583.2023.2173682.
|
18 |
CHEN Z G, ZHOU J X, ZHOU F, et al. State-of-charge estimation of lithium-ion batteries based on improved H infinity filter algorithm and its novel equalization method[J]. Journal of Cleaner Production, 2021, 290: 125180. DOI: 10.1016/j.jclepro. 2020.125180.
|
19 |
DING F, WANG X H, MAO L, et al. Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering[J]. Digital Signal Processing, 2017, 62: 211-223. DOI: 10.1016/j.dsp. 2016.11.010.
|