1 |
YU Q Q, NIE Y W, PENG S M, et al. Evaluation of the safety standards system of power batteries for electric vehicles in China[J]. Applied Energy, 2023, 349: 121674. DOI: 10.1016/j.apenergy. 2023.121674.
|
2 |
李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994. DOI: 10.19799/j.cnki.2095-4239.2023.0316.
|
|
LI F, MIN Y J, ZHANG Y. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. DOI: 10.19799/j.cnki.2095-4239.2023.0316.
|
3 |
LIN C P, XU J, HOU J Y, et al. A fast data-driven battery capacity estimation method under non-constant current charging and variable temperature[J]. Energy Storage Materials, 2023, 63: 102967. DOI: 10.1016/j.ensm.2023.102967.
|
4 |
戴国洪, 张道涵, 彭思敏, 等. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408.
|
|
DAI G H, ZHANG D H, PENG S M, et al. Overview of artificial intelligence in health prediction of power battery[J]. Journal of Mechanical Engineering, 2024, 60(4): 391-408.
|
5 |
HUANG H Y, MENG J H, WANG Y H, et al. A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve[J]. Applied Energy, 2022, 322: 119469. DOI: 10.1016/j.apenergy.2022.119469.
|
6 |
HOU J Y, XU J, LIN C P, et al. State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method[J]. Energy, 2024, 290: 130056. DOI: 10.1016/j.energy.2023.130056.
|
7 |
SHAH A, SHAH K, SHAH C, et al. State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review[J]. Renewable Energy Focus, 2022, 42: 146-164. DOI: 10.1016/j.ref.2022.06.001.
|
8 |
熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J]. 高电压技术, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843.
|
|
XIONG Q, DI Z G, JI S C. Review on health state estimation and life prediction of lithium-ion batteries[J]. High Voltage Engineering, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843.
|
9 |
陈清炀, 何映晖, 余官定, 等. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. DOI: 10.19799/j.cnki.2095-4239.2022.0508.
|
|
CHEN Q Y, HE Y H, YU G D, et al. Integrating model-and data-driven methods for accurate state estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. DOI: 10.19799/j.cnki.2095-4239.2022.0508.
|
10 |
MAO L, HU H Z, CHEN J J, et al. Online state-of-health estimation method for lithium-ion battery based on CEEMDAN for feature analysis and RBF neural network[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 187-200. DOI: 10.1109/JESTPE.2021.3106708.
|
11 |
ZHANG C L, LUO L J, YANG Z, et al. Battery SOH estimation method based on gradual decreasing current, double correlation analysis and GRU[J]. Green Energy and Intelligent Transportation, 2023, 2(5): 100108. DOI: 10.1016/j.geits.2023.100108.
|
12 |
YANG J F, CAI Y F, MI C. Lithium-ion battery capacity estimation based on battery surface temperature change under constant-current charge scenario[J]. Energy, 2022, 241: 122879. DOI: 10.1016/j.energy.2021.122879.
|
13 |
李乐卿,王鹏,孙万洲等.基于锂离子电池容量增量曲线半峰面积的容量在线估计方法[J/OL].电工技术学报,1-9[2024-02-11]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231248.
|
|
LI L Q, WANG P, SUN W Z, et al. Online capacity estimation method based on half-peak area of capacity increment curve of lithium-ion battery [J/OL]. Transactions of China Electrotechnical Society,1-9[2024-02-11]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231248.
|
14 |
MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. DOI: 10.1016/j.energy.2022.123973.
|
15 |
WU J, CUI X C, MENG J H, et al. Data-driven transfer-stacking-based state of health estimation for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 604-614. DOI: 10.1109/TIE.2023.3247735.
|
16 |
LI R, LI W R, ZHANG H N. State of Health and Charge Estimation Based on Adaptive Boosting integrated with particle swarm optimization/support vector machine (AdaBoost-PSO-SVM) Model for Lithium-ion Batteries[J]. International Journal of Electrochemical Science, 2022, 17(2): 220212. DOI: 10.20964/2022.02.03.
|
17 |
GAO Z H, XIE H C, YANG X B, et al. SOH estimation method for lithium-ion batteries under low temperature conditions with nonlinear correction[J]. Journal of Energy Storage, 2024, 75: 109690. DOI: 10.1016/j.est.2023.109690.
|
18 |
CHEN S Z, LIANG Z K, YUAN H L, et al. Li-ion battery state-of-health estimation based on the combination of statistical and geometric features of the constant-voltage charging stage[J]. Journal of Energy Storage, 2023, 72: 108647. DOI: 10.1016/j.est. 2023.108647.
|
19 |
YU Q Q, NIE Y W, LIU S Z, et al. State of health estimation method for lithium-ion batteries based on multiple dynamic operating conditions[J]. Journal of Power Sources, 2023, 582: 233541. DOI: 10.1016/j.jpowsour.2023.233541.
|
20 |
PENG S M, SUN Y X, LIU D D, et al. State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network[J]. Energy, 2023, 282: 128956. DOI: 10.1016/j.energy.2023.128956.
|
21 |
YAN N, YAO Y B, JIA Z D, et al. Online battery health diagnosis for electric vehicles based on DTW-XGBoost[J]. Energy Reports, 2022, 8: 121-128. DOI: 10.1016/j.egyr.2022.09.126.
|
22 |
JAFARI S, BYUN Y C. Prediction of the battery state using the digital twin framework based on the battery management system[J]. IEEE Access, 2022, 10: 124685-124696. DOI: 10.1109/ACCESS.2022.3225093.
|
23 |
WU J, FANG L C, DONG G Z, et al. State of health estimation of lithium-ion battery with improved radial basis function neural network[J]. Energy, 2023, 262: 125380. DOI: 10.1016/j.energy. 2022.125380.
|