1 |
项目综合报告编写组. «中国长期低碳发展战略与转型路径研究»综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25.
|
|
Project Comprehensive Report Compililation Group. Comprehensive report on China's long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Environment, 2020, 30(11): 1-25.
|
2 |
AANNIR M, HAKKOU R, LEVARD C, et al. Towards a closed loop recycling process of end-of-life lithium-ion batteries: Recovery of critical metals and electrochemical performance evaluation of a regenerated LiCoO2[J]. Journal of Power Sources, 2023, 580:DOI: 10.1016/J.JPOWSOUR.2023.233341.
|
3 |
LAI X, CHEN Q, TANG X, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective[J]. Etransportation, 2022, 12: 100169.
|
4 |
任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966.
|
|
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process [J]. Energy Storage Science and Technology, 2018, 7(6): 957-966.
|
5 |
李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J].储能科学与技术, 2023,12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
|
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy storage science and technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
6 |
NING J, XIAO B, ZHONG W, et al. A rapid detection method for the battery state of health[J]. Measurement, 2022, 189:DOI: 10.1016/J.MEASUREMENT.2021.110502.
|
7 |
SUN T, XU B, CUI Y, et al. A sequential capacity estimation for the lithium-ion batteries combining incremental capacity curve and discrete Arrhenius fading model[J]. Journal of Power Sources, 2021, DOI: 10.1016/J.JPOWSOUR.2020.229248.
|
8 |
CHEN J, HAN X, SUN T, et al. Analysis and prediction of battery aging modes based on transfer learning[J]. Applied Energy, 2024, 356: DOI: 10.1016/J.APENERGY.2023.122330.
|
9 |
YANG H, WANG P, AN Y, et al. Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors[J]. eTransportation, 2020, 5: DOI: 10.1016/j.etran.2020.100078.
|
10 |
ZHAO J, LING H, LIU J, et al. Machine learning for predicting battery capacity for electric vehicles[J]. eTransportation, 2023, 15: DOI:10.1016/J.ETRAN.2022.100214.
|
11 |
杨新波, 郑岳久, 高文凯, 等. 基于改进等效电路模型的高比能量储能锂电池系统功率状态估计[J]. 电网技术, 2021, 45(1): 57-66. DOI: 10.13335/j.1000-3673.pst.2020.1026.
|
|
YANG X B, ZHENG Y J, GAO W K, et al. Power state estimation of high specific energy storage lithium battery system based on extended equivalent circuit model [J]. Power Grid Technology, 2021, 45(1): 57-66. DOI: 10.13335/j.1000-3673.pst.2020.1026.
|
12 |
谭必蓉,杜建华,叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J].储能科学与技术, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016.
|
|
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016.
|