储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 2963-2971.doi: 10.19799/j.cnki.2095-4239.2024.0144

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究

陈星光1(), 沈逸凡1, 邵裕新1, 郑岳久1,2(), 孙涛1(), 来鑫1, 沈凯1, 韩雪冰2   

  1. 1.上海理工大学机械学院,上海 200093
    2.清华大学汽车安全与节能国家重点实验室,北京 100084
  • 收稿日期:2024-02-23 修回日期:2024-02-28 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 郑岳久,孙涛 E-mail:chenxg101@163.com;yuejiu.zheng@usst.edu.cn;tao_sun531@usst.edu.cn
  • 作者简介:陈星光(1998—),男,硕士研究生,研究方向为锂离子电池状态估计,E-mail:chenxg101@163.com
  • 基金资助:
    国家自然科学基金(52277222);上海市自然科学基金(23ZR1444600)

Capacity identification method for LiFePO4 batteries with specific optimization in real vehicle applications

Xingguang CHEN1(), Yifan SHEN1, Yuxin SHAO1, Yuejiu ZHENG1,2(), Tao SUN1(), Xin LAI1, Kai SHEN1, Xuebing HAN2   

  1. 1.College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received:2024-02-23 Revised:2024-02-28 Online:2024-09-28 Published:2024-09-20
  • Contact: Yuejiu ZHENG, Tao SUN E-mail:chenxg101@163.com;yuejiu.zheng@usst.edu.cn;tao_sun531@usst.edu.cn

摘要:

锂离子电池作为电动汽车的重要部件之一,其健康程度直接影响车辆的续航能力、安全性能以及整体运行效率。其中,容量作为描述电池健康状态的重要指标,实车条件下的准确估计是一个难题。为此,本文提出一种结合安时积分与等效电路模型,将容量作为待辨识参数之一,通过粒子群优化算法以实现容量辨识的方法。在此基础上,聚焦于磷酸铁锂电池的电压特殊性,提出了一种面向慢充工况的特异性优化方法,以解决容量辨识过程中模型端电压拟合较差的问题,主要通过截取充电末期电压片段与使用双维度目标函数两种方法实现。本文基于两款搭载磷酸铁锂电池的电动汽车车型进行了精度验证。鉴于实车数据缺乏容量标签,本文首先基于静置充电片段计算容量作为标签值。由于标签数量不足,又采用小里程下的标称容量作为标签,通过这两种方法进行精度验证。结果显示,两款车型的平均绝对百分比误差分别为2.33%和3.38%,表明该方法具有较高的精度与适用性,为实车容量估计提供了一种思路与方法。

关键词: 电动汽车, 实车数据, 容量估计, 磷酸铁锂电池

Abstract:

Lithium-ion batteries, a crucial component of electric vehicles, directly influence vehicles' range, safety performance, and overall operational efficiency. Capacity, a key indicator of battery health, presents challenges in estimation and acquisition under real vehicle conditions. In response, this study introduced a method that integrates ampere-hour integration with the equivalent circuit model, treating capacity as a parameter to be identified through the particle swarm optimization algorithm. Building on this, the study focused on the peculiarities of lithium iron phosphate batteries and proposed a specific optimization approach for slow charging conditions to address issues of poor model voltage fitting during the capacity identification process, which is primarily implemented by deleting the voltage segment at the end of charging and employing a two-dimensional loss function. The method was precision-validated across two electric vehicle models equipped with lithium iron phosphate batteries. Given the absence of direct capacity labels in real vehicle data, the study first calculated capacity based on static charging segments as label values. Due to insufficient label quantities, the nominal capacity under small mileage was also used as a label for accuracy validation. The results show that the mean absolute percentage error for the two vehicle models was 2.33% and 3.38%, respectively. These results demonstrated the method's high accuracy and applicability, offering a new perspective and approach for estimating real-vehicle battery capacity.

Key words: electric vehicles, real vehicle data, capacity estimation, lithium iron phosphate battery

中图分类号: