1 |
安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41(1): 22-42. DOI: 10.13374/j.issn2095-9389.2019.01.003.
|
|
AN F Q, ZHAO H L, CHENG Z, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42. DOI: 10.13374/j.issn2095-9389.2019.01.003.
|
2 |
陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. DOI: 10.12028/j.issn.2095-4239.2018.0167.
|
|
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. DOI: 10.12028/j.issn.2095-4239.2018.0167.
|
3 |
王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202. DOI: 10.19799/j.cnki.2095-4239.2020.0345.
|
|
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202. DOI: 10.19799/j.cnki.2095-4239.2020.0345.
|
4 |
KARIMI G, DEHGHAN A R. Thermal analysis of high-power lithium-ion battery packs using flow network approach[J]. International Journal of Energy Research, 2014, 38(14): 1793-1811. DOI: 10.1002/er.3173.
|
5 |
JIANG Z Y, QU Z G, ZHANG J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy[J]. Applied Energy, 2020, 268: 115007. DOI: 10.1016/j.apenergy.2020.115007.
|
6 |
ZOU C F, ZHANG L, HU X S, et al. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors[J]. Journal of Power Sources, 2018, 390: 286-296. DOI: 10.1016/j.jpowsour.2018.04.033.
|
7 |
WANG Z L, FENG G J, ZHEN D, et al. A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles[J]. Energy Reports, 2021, 7: 5141-5161. DOI: 10.1016/j.egyr.2021.08.113.
|
8 |
ZHOU Y, WANG B C, LI H X, et al. A surrogate-assisted teaching-learning-based optimization for parameter identification of the battery model[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5909-5918. DOI: 10.1109/TII.2020.3038949.
|
9 |
LI Y M, LIU G X, DENG W, et al. Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods[J]. Applied Energy, 2024, 367: 123437. DOI: 10.1016/j.apenergy.2024.123437.
|
10 |
LI W H, CAO D C, JÖST D, et al. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[J]. Applied Energy, 2020, 269: 115104. DOI: 10.1016/j.apenergy.2020.115104.
|
11 |
SANTHANAGOPALAN S, GUO Q Z, WHITE R E. Parameter estimation and model discrimination for a lithium-ion cell[J]. Journal of the Electrochemical Society, 2007, 154(3): A198. DOI: 10.1149/1.2422896.
|
12 |
BOOVARAGAVAN V, HARINIPRIYA S, SUBRAMANIAN V R. Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models[J]. Journal of Power Sources, 2008, 183(1): 361-365. DOI: 10.1016/j.jpowsour.2008.04.077.
|
13 |
SHUI Z Y, LI X H, FENG Y, et al. Combining reduced-order model with data-driven model for parameter estimation of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2023, 70(2): 1521-1531. DOI: 10.1109/TIE.2022.3157980.
|
14 |
FAN G D. Systematic parameter identification of a control-oriented electrochemical battery model and its application for state of charge estimation at various operating conditions[J]. Journal of Power Sources, 2020, 470: 228153. DOI: 10.1016/j.jpowsour.2020.228153.
|
15 |
VAN THIEU N, MIRJALILI S. MEALPY: An open-source library for latest meta-heuristic algorithms in Python[J]. Journal of Systems Architecture, 2023, 139: 102871. DOI: 10.1016/j.sysarc.2023. 102871.
|
16 |
ONG I J, NEWMAN J. Double-layer capacitance in a dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1999, 146(12): 4360-4365. DOI: 10.1149/1.1392643.
|
17 |
SUTHAR B, NORTHROP P W C, RIFE D, et al. Effect of porosity, thickness and tortuosity on capacity fade of anode[J]. Journal of the Electrochemical Society, 2015, 162(9): A1708-A1717. DOI: 10.1149/2.0061509jes.
|
18 |
HUANG J, GE H, LI Z, et al. An agglomerate model for the impedance of secondary particle in lithium-ion battery electrode[J]. Journal of the Electrochemical Society, 2014, 161(8): E3202-E3215. DOI: 10.1149/2.027408jes.
|
19 |
HUANG J, LI Z, ZHANG J B, et al. An analytical three-scale impedance model for porous electrode with agglomerates in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(4): A585-A595. DOI: 10.1149/2.0241504jes.
|
20 |
ZHOU X Z, WANG Z H, ZHANG W G, et al. Construction of simplified impedance model based on electrochemical mechanism and identification of mechanism parameters[J]. Journal of Energy Storage, 2024, 76: 109673. DOI: 10.1016/j.est.2023.109673.
|
21 |
LANDESFEIND J, GASTEIGER H A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2019, 166(14): A3079-A3097. DOI: 10.1149/2.0571912jes.
|
22 |
LI W H, DEMIR I, CAO D C, et al. Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence[J]. Energy Storage Materials, 2022, 44: 557-570. DOI: 10.1016/j.ensm.2021.10.023.
|