储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 2952-2962.doi: 10.19799/j.cnki.2095-4239.2024.0658

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法

孙丙香1,2(), 杨鑫1,2, 周兴振1, 马仕昌1,2, 王志豪1, 张维戈1   

  1. 1.北京交通大学国家能源主动配电网技术研发中心
    2.北京交通大学载运装备多源动力系统;教育部重点实验室,北京 100044
  • 收稿日期:2024-07-15 修回日期:2024-08-15 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 孙丙香 E-mail:bxsun@bjtu.edu.cn
  • 作者简介:孙丙香(1979—),女,博士,教授,研究方向为锂离子动力电池高效集成及智能管控技术,E-mail:bxsun@bjtu.edu.cn

Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries

Bingxiang SUN1,2(), Xin YANG1,2, Xingzhen ZHOU1, Shichang MA1,2, Zhihao WANG1, Weige ZHANG1   

  1. 1.National Active Distribution Network Technology Research Center (NANTEC), Beijing Jiaotong University
    2.Key Laboratory of Vehicular Multi-Energy Drive Systems (VMEDS), Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
  • Received:2024-07-15 Revised:2024-08-15 Online:2024-09-28 Published:2024-09-20
  • Contact: Bingxiang SUN E-mail:bxsun@bjtu.edu.cn

摘要:

快速准确地辨识电化学参数对锂离子电池机理建模至关重要。而传统的参数辨识方法多采用直接拟合,难以精确反映电池的内部状态。为解决这一问题,本工作以37 Ah三元电池为研究对象,基于电化学反应中的法拉第过程、双层电容的弥散效应的非法拉第过程以及固相与液相的传导过程,构建了一个与电化学模型映射的修正简化阻抗模型,与伪二维(P2D)模型不同,该模型输入为不同荷电状态(SOC)下的三电极电化学阻抗谱(EIS),通过拟合EIS得到对应工况电化学参数,实现对电池模型准确的参数识别。通过拟合阻抗谱,辨识得到了16个高敏感度的电化学参数,其中正极7个、负极9个。我们进一步比较了66种元启发式算法在锂离子电池电化学参数识别中的性能表现,从识别精度、计算效率和鲁棒性等方面对其进行多维分析。研究结果表明,自适应差分进化算法在参数识别中综合效果最佳,其平均绝对百分比误差小于3%,非重复函数计算次数小于35000次,表明其达到最大准确度的同时运算量较低,提出的辨识方法不仅更好地反映了参数的物理意义,还为电化学模型的简化计算和在线辨识提供了有力支持。

关键词: 锂离子电池, 简化阻抗模型, 元启发式算法, 电化学阻抗谱

Abstract:

Fast and accurate identification of electrochemical parameters is crucial for mechanistic modeling of lithium-ion batteries. Traditional parameter identification methods mostly use direct fitting, which makes it difficult to accurately reflect the internal state of a battery. To solve this problem, in this study, a modified simplified impedance model mapped with an electrochemical model was constructed based on the Faradaic process of electrochemical reactions, the non-Faradaic process of the double-layer capacitance dispersion effect, and the conduction process in the solid and liquid phases. The model was applied to a 37 Ah ternary battery. The model's inputs are the three-electrode electrochemical impedance spectra (EIS) under different states of charge (SOC), unlike the P2D model, which are used as inputs to the three-electrode EIS under the different SOCs. The corresponding working conditions of the electrochemical parameters were obtained by fitting the EIS to achieve accurate parameter identification of the battery model. By fitting the impedance spectra, 16 highly sensitive electrochemical parameters were identified: 7 for the positive and 9 for the negative electrodes. Further, we compared the performance of 66 metaheuristic algorithms in lithium-ion battery electrochemical parameter identification and analyzed them multidimensionally in terms of identification accuracy, computational efficiency, and robustness. The results showed that the adaptive differential evolutionary algorithm has the best overall effect in parameter identification, with its average absolute percentage error of less than 3% and the number of non-repeating function calculations of less than 35000, indicating that it achieves maximum accuracy with low arithmetic and that the proposed identification method not only better reflects the physical significance of the parameters, but it also provides strong support for simplified computation and on-line identification of the electrochemical model.

Key words: lithium-ion battery, simplified impedance model, metaheuristic algorithm, EIS

中图分类号: