1 |
TIAN X, GENG Y, SARKIS J, et al. Features of critical resource trade networks of lithium-ion batteries[J]. Resources Policy, 2021, 73: 102177. DOI: 10.1016/j.resourpol.2021.102177.
|
2 |
RAUF H, KHALID M, ARSHAD N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111903. DOI: 10.1016/j.rser.2021.111903.
|
3 |
JIANG K, LIU X L, LOU G F, et al. Parameter sensitivity analysis and cathode structure optimization of a non-aqueous Li-O2 battery model[J]. Journal of Power Sources, 2020, 451: 227821. DOI: 10.1016/j.jpowsour.2020.227821.
|
4 |
JIANG S D, SONG Z X. A review on the state of health estimation methods of lead-acid batteries[J]. Journal of Power Sources, 2022, 517: 230710. DOI: 10.1016/j.jpowsour.2021.230710.
|
5 |
HOSSAIN LIPU M S, ANSARI S, MIAH M S, et al. Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues and prospects[J]. Journal of Energy Storage, 2022, 55: 105752. DOI: 10.1016/j.est.2022.105752.
|
6 |
YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: 128015. DOI: 10.1016/j.jclepro.2021.128015.
|
7 |
XIONG R, KIM J, SHEN W X, et al. Key technologies for electric vehicles[J]. Green Energy and Intelligent Transportation, 2022, 1(2): 100041. DOI: 10.1016/j.geits.2022.100041.
|
8 |
ZHAO J, ZHU Y, ZHANG B, et al. Review of state estimation and remaining useful life prediction methods for lithium–ion batteries[J]. Sustainability, 2023, 15(6): 5014.
|
9 |
TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: 120813. DOI: 10.1016/j.jclepro.2020.120813.
|
10 |
顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085.
|
|
GU J P, JIANG L, ZHANG X S, et al. Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085.
|
11 |
SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI: 10.1016/j.apenergy.2021.117346.
|
12 |
TRAN M K, MATHEW M, JANHUNEN S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters[J]. Journal of Energy Storage, 2021, 43: 103252. DOI: 10.1016/j.est.2021.103252.
|
13 |
陈媛,段文献,何怡刚,等.带降噪自编码器的锂离子电池健康状态估计算法[J/OL].电工技术学报,1-17[2024-05-24].https://doi.org/10.19595/j.cnki.1000-6753.tces.231644.
|
|
CHEN Y,DUAN W X,HE Y G, et al. Predicting the state of charge and health of batteries using data-driven machine learning[J/OL]. Nature Machine Intelligence,1-17[2024-05-24].https://doi.org/10.19595/j.cnki.1000-6753.tces.231644.
|
14 |
ZHANG M, YANG D F, DU J X, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms[J]. Energies, 2023, 16(7): 3167. DOI: 10.3390/en16073167.
|
15 |
REN Z, DU C Q. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries[J]. Energy Reports, 2023, 9: 2993-3021. DOI: 10.1016/j.egyr.2023.01.108.
|
16 |
CHEN K, LIAO Q, LIU K, et al. Capacity degradation prediction of lithium-ion battery based on artificial bee colony and multi-kernel support vector regression[J]. Journal of Energy Storage, 2023, 72: 108160. DOI: 10.1016/j.est.2023.108160.
|
17 |
VAN C N, QUANG D T. Estimation of SoH and internal resistances of lithium ion battery based on LSTM network[J]. International Journal of Electrochemical Science, 2023, 18(6): 100166. DOI: 10.1016/j.ijoes.2023.100166.
|
18 |
FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741. DOI: 10.1016/j.est. 2020.101741.
|
19 |
SUN S, LIN Q B, LI H S, et al. Simultaneous estimation of SOH and SOC of batteries based on SVM[C]//2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). December 9-12, 2022, Beijing, China. IEEE, 2022: 1934-1938. DOI: 10.1109/SPIES55999.2022.10082477.
|
20 |
XIAO S, LIU P Y, CHEN K, et al. Battery state of health prediction based on voltage intervals, BP neural network and genetic algorithm[J]. International Journal of Green Energy, 2024, 21(8): 1743-1756. DOI: 10.1080/15435075.2023.2264959.
|
21 |
WEN L, BO N, YE X C, et al. A novel auto-LSTM-based state of health estimation method for lithium-ion batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(3): 030902. DOI: 10.1115/1.4050100.
|
22 |
JIA C Y, TIAN Y K, SHI Y H, et al. State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer[J]. Energy, 2023, 285: 129401. DOI: 10.1016/j.energy.2023.129401.
|
23 |
ZHANG Q C, LI X, ZHOU C, et al. State-of-health estimation of batteries in an energy storage system based on the actual operating parameters[J]. Journal of Power Sources, 2021, 506: 230162. DOI: 10.1016/j.jpowsour.2021.230162.
|
24 |
BIAN X L, WEI Z B, LI W H, et al. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2226-2236. DOI: 10.1109/TPEL. 2021.3104723.
|
25 |
GISMERO A, NØRREGAARD K, JOHNSEN B, et al. Electric vehicle battery state of health estimation using Incremental Capacity Analysis[J]. Journal of Energy Storage, 2023, 64: 107110. DOI: 10.1016/j.est.2023.107110.
|
26 |
WANG Q S, WANG Z P, ZHANG L, et al. A battery capacity estimation framework combining hybrid deep neural network and regional capacity calculation based on real-world operating data[J]. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8499-8508. DOI: 10.1109/TIE.2022.3229350.
|
27 |
JENU S, HENTUNEN A, HAAVISTO J, et al. State of health estimation of cycle aged large format lithium-ion cells based on partial charging[J]. Journal of Energy Storage, 2022, 46: 103855. DOI: 10.1016/j.est.2021.103855.
|
28 |
ZHANG Q C, LI X Z, DU Z C, et al. Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules[J]. Journal of Energy Storage, 2021, 40: 102743. DOI: 10.1016/j.est.2021.102743.
|
29 |
CHEN K, LI J L, LIU K, et al. State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine[J]. Green Energy and Intelligent Transportation, 2024, 3(1): 100151. DOI: 10.1016/j.geits. 2024.100151.
|
30 |
SUN H L, SUN J R, ZHAO K, et al. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation[J]. Mathematical Problems in Engineering, 2022, 2022: 9645892. DOI: 10.1155/2022/9645892.
|
31 |
SHE C Q, ZHANG L, WANG Z P, et al. Battery state-of-health estimation based on incremental capacity analysis method: Synthesizing from cell-level test to real-world application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 214-223. DOI: 10.1109/JESTPE.2021.3112754.
|
32 |
TIAN J P, XIONG R, SHEN W X. State-of-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10363-10373. DOI: 10.1109/TPEL.2020.2978493.
|
33 |
PARK S, LEE P, KIM D, et al. A SOH estimation method based on ICA peaks on temperature-robust and aging mechanism analysis under high temperature[C]//2021 IEEE Applied Power Electronics Conference and Exposition (APEC). June 14-17, 2021, Phoenix, AZ, USA. IEEE, 2021: 2646-2649. DOI: 10.1109/APEC42165.2021.9487032.
|
34 |
HOU X K, GUO X D, YUAN Y P, et al. The state of health prediction of Li-ion batteries based on an improved extreme learning machine[J]. Journal of Energy Storage, 2023, 70: 108044. DOI: 10.1016/j.est.2023.108044.
|