储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3006-3015.doi: 10.19799/j.cnki.2095-4239.2024.0549

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

基于加权UMAP和改进BLS的锂电池温度预测

黎耀康(), 杨海东, 徐康康(), 蓝昭宇, 章润楠   

  1. 广东工业大学机电工程学院,广东 广州 510006
  • 收稿日期:2024-06-18 修回日期:2024-07-15 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 徐康康 E-mail:2672284766@qq.com;xukangkang@gdut.edu.cn
  • 作者简介:黎耀康(2001—),男,硕士研究生,研究方向为电池温度预测及时间序列预测,E-mail:2672284766@qq.com

Temperature prediction of lithium batteries based on weighted UMAP and improved BLS

Yaokang LI(), Haidong YANG, Kangkang XU(), Zhaoyu LAN, Runnan ZHANG   

  1. School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2024-06-18 Revised:2024-07-15 Online:2024-09-28 Published:2024-09-20
  • Contact: Kangkang XU E-mail:2672284766@qq.com;xukangkang@gdut.edu.cn

摘要:

锂电池热过程的温度预测对锂电池的寿命管理和使用安全有着重要意义。一般电池管理系统热管理依赖准确的热过程模型。然而锂电池热过程的机理复杂,属于强非线性分布参数系统,具有参数时空耦合、时变、强非线性的特点,常规方法难以实现其热过程的精确建模。针对上述问题,提出了一种基于加权UMAP和改进BLS的三段式锂电池热过程建模方式。首先通过引入加权改进的均匀流形逼近与投影(weighted uniform manifold approximation and projection,WUMAP)降维算法解决非线性降维难题的同时保留了数据的全局与局部信息。然后利用一段宽度学习系统(broad learning system,BLS)模型对降维得到的时序数据预测。最后再通过一段粒子群算法优化的混合核宽度学习系统(particle swarm optimization-mixed kernel broad learning system,PSO-MKBLS)模型对时空域温度数据重构。为验证模型有效性,使用平板式32 Ah的Li(Ni0.5Co0.2Mn0.3)O2 三元软包锂电池的热过程建模试验。实验结果表明:最终模型与改进前相比,R2提高0.0546,MAE和RMSE分别降低0.0082和0.0092;同时与多个对比模型相比,相对误差ARE较低(在0.035以内),并且各误差指标也更好,证明模型具有良好的预测精度。

关键词: 分布参数系统, 锂电池温度预测, 加权均匀流形逼近与投影, 混合核宽度学习系统

Abstract:

Predicting the temperature of the thermal process in lithium batteries has significant implications for the lifespan management and safety of these batteries. Thermal management in battery management systems typically depends on accurate thermal process models. However, the thermal process in lithium batteries is complex, constituting a strongly nonlinear distributed parameter system with the characteristics of parameter spatiotemporal coupling, time variation, and strong nonlinearity. Conventional methods struggle to accurately model this thermal process.To address these issues, this study proposes a three-stage lithium battery thermal process modeling method based on weighted uniform manifold approximation and projection (WUMAP) and an improved broad learning system (BLS). First, a WUMAP dimensionality reduction algorithm was introduced to solve the nonlinear dimensionality reduction problem while preserving global and local data information. Then, a BLS model was introduced to predict the temporal data obtained from the dimensionality reduction. Finally, a mixed multikernel BLS (MKBLS) model optimized by particle swarm optimization was used to reconstruct the spatiotemporal temperature data.To validate the effectiveness of the model, modeling experiments were conducted on the thermal process of a flat plate 32 Ah Li(Ni0.5Co0.2Mn0.3)O2 ternary lithium battery. The experimental results show that the final model, compared to its previous version, increased R2 by 0.0546 and decreased MAE and RMSE by 0.0082 and 0.0092, respectively. When compared with several other models, the final model demonstrated a lower relative error (ARE) of less than 0.035 and better performance on all error indicators, confirming its high prediction accuracy.

Key words: distributed parameter system, temperature prediction, weighted uniform manifold approximation and projection (WUMAP), mixed kernel broad learning system (MKBLS)

中图分类号: