1 |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
2 |
来振华,孔德群,陈斌,等.电动汽车锂电池安全问题诊断算法研究综述[C]//中国汽车工程学会. 2022中国汽车工程学会年会论文集(4). 北京奔驰汽车有限公司新能源研发与试验认证部, 2022: 10. DOI:10.26914/c.cnkihy.2022.091300.
|
3 |
庞莹, 王婷婷. 锂离子电池剩余寿命预测方法研究进展[J]. 环境技术, 2022, 40(6): 23-27. DOI: 10.3969/j.issn.1004-7204.2022.06.007.
|
|
PANG Y, WANG T T. Research progress of remaining useful life prediction for lithium ion batteries[J]. Environmental Technology, 2022, 40(6): 23-27. DOI: 10.3969/j.issn.1004-7204.2022.06.007.
|
4 |
张宇波, 王有元, 黄洞宁, 等. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233.
|
|
ZHANG Y B, WANG Y Y, HUANG D N, et al. Prognostic method of lithium-ion battery lifetime degradation under various working conditions[J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233.
|
5 |
BRACO E, SAN MARTÍN I, SANCHIS P, et al. State of health estimation of second-life lithium-ion batteries under real profile operation[J]. Applied Energy, 2022, 326: 119992. DOI: 10.1016/j.apenergy.2022.119992.
|
6 |
WIDODO A, SHIM M C, CAESARENDRA W, et al. Intelligent prognostics for battery health monitoring based on sample entropy[J]. Expert Systems with Applications, 2011, 38(9): 11763-11769. DOI: 10.1016/j.eswa.2011.03.063.
|
7 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. DOI: 10.1038/s41560-019-0356-8.
|
8 |
FEI Z C, YANG F F, TSUI K L, et al. Early prediction of battery lifetime via a machine learning based framework[J]. Energy, 2021, 225: 120205. DOI: 10.1016/j.energy.2021.120205.
|
9 |
YANG D, ZHANG X, PAN R, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387-395. DOI: 10.1016/j.jpowsour.2018.03.015.
|
10 |
ZHANG Y J, LIU Y J, WANG J, et al. State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression[J]. Energy, 2022, 239: 121986. DOI: 10.1016/j.energy.2021.121986.
|
11 |
ZHOU R M, ZHU R, HUANG C G, et al. State of health estimation for fast-charging lithium-ion battery based on incremental capacity analysis[J]. Journal of Energy Storage, 2022, 51: 104560. DOI: 10.1016/j.est.2022.104560.
|
12 |
DENG Z W, HU X S, LI P H, et al. Data-driven battery state of health estimation based on random partial charging data[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5021-5031. DOI: 10.1109/TPEL.2021.3134701.
|
13 |
LYU Z Q, WANG G, GAO R J. Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework[J]. Energy, 2022, 251: 123852. DOI: 10.1016/j.energy. 2022.123852.
|
14 |
肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341.
|
|
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341.
|
15 |
PAULSON N H, KUBAL J, WARD L, et al. Feature engineering for machine learning enabled early prediction of battery lifetime[J]. Journal of Power Sources, 2022, 527: 231127. DOI: 10.1016/j.jpowsour.2022.231127.
|
16 |
YANG F F, WANG D, XU F, et al. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model[J]. Journal of Power Sources, 2020, 476: 228654. DOI: 10.1016/j.jpowsour.2020.228654.
|
17 |
ZHANG Y, PENG Z, GUAN Y, et al. Prognostics of battery cycle life in the early-cycle stage based on hybrid model[J]. Energy, 2021, 221: 119901. DOI: 10.1016/j.energy.2021.119901.
|
18 |
SAXENA S, WARD L, KUBAL J, et al. A convolutional neural network model for battery capacity fade curve prediction using early life data[J]. Journal of Power Sources, 2022, 542: 231736. DOI: 10.1016/j.jpowsour.2022.231736.
|
19 |
YANG Y X. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications[J]. Applied Energy, 2021, 292: 116897. DOI: 10.1016/j.apenergy. 2021.116897.
|
20 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI: 10.1109/TVT.2018.2805189.
|
21 |
JIANG L D, LI Z X, HU C Y, et al. Flexible parallel neural network architecture model for early prediction of lithium battery life[J/OL]. arXiv:2401.16102, 2024. DOI: 10.48550/arXiv.2401.16102.
|
22 |
LI M Y, WEI M W, HE X, et al. Enhancing part features via contrastive attention module for vehicle re-identification[C]//2022 IEEE International Conference on Image Processing (ICIP). October 16-19, 2022, Bordeaux, France. IEEE, 2022: 1816-1820. DOI: 10.1109/ICIP46576.2022.9897943.
|
23 |
NIU B, WEN W L, REN W Q, et al. Single image super-resolution via a holistic attention network[M]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 191-207. DOI: 10.1007/978-3-030-58610-2_12.
|
24 |
WANG S D, HUANG L, JIANG D, et al. Improved multi-stream convolutional block attention module for sEMG-based gesture recognition[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 909023. DOI: 10.3389/fbioe.2022.909023.
|
25 |
JIANG M, YIN S L. Facial expression recognition based on convolutional block attention module and multi-feature fusion[J]. International Journal of Computational Vision and Robotics, 2023, 13(1): 21. DOI: 10.1504/ijcvr.2023.127298.
|
26 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV), 2018. DOI: 10.1007/978-3-030-01234-2_1.
|
27 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|