储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3016-3029.doi: 10.19799/j.cnki.2095-4239.2024.0583

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

考虑能量和温度特征的锂离子电池早期寿命预测

何宁(), 杨芳芳()   

  1. 中山大学智能工程学院,广东 广州 510000
  • 收稿日期:2024-06-28 修回日期:2024-07-19 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 杨芳芳 E-mail:hening25@mail2.sysu.edu.cn;yangff7@mail.sysu.edu.cn
  • 作者简介:何宁(2001—),男,硕士研究生,研究方向为锂离子电池早期寿命预测,E-mail:hening25@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62203482)

Early prediction of battery lifetime based on energy and temperature features

Ning HE(), Fangfang YANG()   

  1. School of Intelligent Systems Engineering, Sun Yan-sen University, Guangzhou 510000, Guangdong, China
  • Received:2024-06-28 Revised:2024-07-19 Online:2024-09-28 Published:2024-09-20
  • Contact: Fangfang YANG E-mail:hening25@mail2.sysu.edu.cn;yangff7@mail.sysu.edu.cn

摘要:

锂离子电池长期充放电循环周期后会出现容量退化,性能下降,对储能系统构成潜在的危害。为此,本工作提出了考虑能量和温度特征的锂离子电池早期寿命预测混合模型,用以解决当前研究中对温度和能量特征以及深度学习提取出的特征重要性研究不足的问题。首先,为了充分挖掘温度数据中的有效信息,利用电压、电流和温度数据间接计算提取电池的容量、能量和温度信号能量曲线,选取前100个周期的曲线数据构建对应的二维特征。其次,针对卷积神经网络无法对所提取特征图进行筛选的问题,提出了一种基于卷积神经网络和卷积块注意力机制的特征提取架构,利用注意力机制识别各特征图的重要程度,进而实现从特征到早期寿命的映射。在MIT锂离子电池退化数据集上展开实验,对所提出的特征和方法进行效果验证。研究结果表明,相较于基础的卷积神经网络,所提出的混合模型取得了更优的预测效果,平均均方根误差为97.43。此外,对比一系列不同特征作为输入的实验可以发现所提出的温度信号能量特征性能较好,同时多特征融合技术能够实现更优的预测性能。最后,在更少周期数据应用的场景下,模型至少需要70个周期的数据才能保持较好的预测性能和较高的稳定性。

关键词: 锂离子电池, 早期寿命预测, 深度学习, 温度特征, 能量特征

Abstract:

The capacity of lithium-ion batteries degrades after numerous charge-discharge cycles, posing a risk to energy storage systems. This study proposes a hybrid model for the early lifetime prediction of lithium-ion batteries considering their energy and temperature features. The proposed model addresses the insufficient analysis of temperature and energy features and the lack of research inon the significance of features extracted via deep learning. First, to fully mine the effective information from the temperature data, the voltage, current, and temperature data were employed to indirectly compute and extract the capacity, energy, and temperature signal energy curves of the battery. The first 100 cycles were selected to construct the corresponding two-dimensional features. Second, to address the inability of convolutional neural networks (CNNs) to filter extracted feature maps, a feature extraction architecture based on CNNs and a convolutional block attention mechanism was proposed, The attention mechanism identifies the importance of each feature map, facilitating mapping from features to early lifetime predictions. Experiments conducted on the MIT lithium-ion battery degradation dataset validated the effectiveness of the proposed features and methods. The results indicated that the proposed hybrid model outperformed the basic CNN, achieving superior prediction performance with an average root mean square error of 97.43. Furthermore, a series of experiments using different features as inputs revealed that the proposed temperature signal energy features provide superior prediction performance, whereas the multi-feature fusion technology can achieve better prediction performance. Finally, in scenarios with limited period data application, the model requires at least 70 cycles to maintain good prediction performance and high stability.

Key words: lithium-ion batteries, early lifetime prediction, deep learning, temperature feature, energy feature

中图分类号: