1 |
WEI Z B, QUAN Z Y, WU J D, et al. Deep deterministic policy gradient-DRL enabled multiphysics-constrained fast charging of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2588-2598. DOI: 10.1109/TIE.2021.3070514.
|
2 |
赵轩, 李美莹, 余强, 等. 电动汽车动力锂电池状态估计综述[J]. 中国公路学报, 2023, 36(6): 254-283. DOI: 10.19721/j.cnki.1001-7372.2023.06.021.
|
|
ZHAO X, LI M Y, YU Q, et al. State estimation of power lithium batteries for electric vehicles: A review[J]. China Journal of Highway and Transport, 2023, 36(6): 254-283. DOI: 10.19721/j.cnki.1001-7372.2023.06.021.
|
3 |
谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016.
|
|
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016.
|
4 |
ZHANG M Y, FAN X B. Design of battery management system based on improved ampere-hour integration method[J]. International Journal of Electric and Hybrid Vehicles, 2022, 14(1/2): 1. DOI: 10.1504/ijehv.2022.125249.
|
5 |
SHAH A, SHAH K, SHAH C, et al. State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review[J]. Renewable Energy Focus, 2022, 42: 146-164. DOI: 10.1016/j.ref.2022.06.001.
|
6 |
宋胜, 李云伍, 赵颖, 等. 锂离子电池片段数据的荷电状态估计研究[J]. 电源技术, 2022, 46(7): 734-738. DOI: 10.3969/j.issn.1002-087X.2022.07.008.
|
|
SONG S, LI Y W, ZHAO Y, et al. Research on SOC estimation based on fragment data of lithium-ion battery[J]. Chinese Journal of Power Sources, 2022, 46(7): 734-738. DOI: 10.3969/j.issn.1002-087X.2022.07.008.
|
7 |
LIU Y T, MA R, PANG S Z, et al. A nonlinear observer SOC estimation method based on electrochemical model for lithium-ion battery[J]. IEEE Transactions on Industry Applications, 2021, 57(1): 1094-1104. DOI: 10.1109/TIA.2020.3040140.
|
8 |
ADAIKKAPPAN M, SATHIYAMOORTHY N. A real time state of charge estimation using Harris Hawks optimization-based filtering approach for electric vehicle power batteries[J]. International Journal of Energy Research, 2022, 46(7): 9293-9309. DOI: 10.1002/er.7806.
|
9 |
ZHAO X Z, SUN B X, ZHANG W G, et al. Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries[J]. Applied Energy, 2024, 353: 121992. DOI: 10.1016/j.apenergy.2023.121992.
|
10 |
彭思敏, 徐璐, 张伟峰, 等. 锂离子电池功率状态预测方法综述[J]. 机械工程学报, 2022, 58(20): 361-378.
|
|
PENG S M, XU L, ZHANG W F, et al. Overview of state of power prediction methods for lithium-ion batteries[J]. Journal of Mechanical Engineering, 2022, 58(20): 361-378.
|
11 |
谢翌, 江迪生, 张扬军, 等. 新能源汽车锂离子电池组SOC-SOP联合估计算法[J]. 汽车安全与节能学报, 2022, 13(3): 580-589. DOI: 10.3969/j.issn.1674-8484.2022.03.020.
|
|
XIE Y, JIANG D S, ZHANG Y J, et al. Joint estimation algorithm of SOC-SOP for lithium-ion battery pack in new energy vehicles[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 580-589. DOI: 10.3969/j.issn.1674-8484.2022.03.020.
|
12 |
LI J Y, YAN N, LI C L, et al. Joint estimation of SOC and SOP method for battery modules based on electro-thermal coupling characteristics[C]//2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). October 27-29, 2023, Tianjin, China. IEEE, 2023: 1-2. DOI: 10.1109/ASEMD59061.2023.10368776.
|
13 |
张媛. 计及温度和老化的磷酸铁锂电池组荷电状态估算方法研究[D]. 北京: 北京交通大学, 2023. DOI: 10.26944/d.cnki.gbfju. 2023.000872.
|
|
ZHANG Y. Study on estimation method of state of charge of lithium iron phosphate battery considering temperature and aging[D]. Beijing: Beijing Jiaotong University, 2023. DOI: 10.26944/d.cnki.gbfju.2023.000872.
|