1 |
LU X J, ZOU W, HUANG M H. A novel spatiotemporal LS-SVM method for complex distributed parameter systems with applications to curing thermal process[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 1156-1165. DOI: 10.1109/TII.2016.2557805.
|
2 |
XU K K, YANG H D, ZHU C J, et al. Deep extreme learning machines based two-phase spatiotemporal modeling for distributed parameter systems[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3): 2919-2929. DOI: 10.1109/TII.2022.3165870.
|
3 |
WANG Y L, CHEN X J, LI C L, et al. Temperature prediction of lithium-ion battery based on artificial neural network model[J]. Applied Thermal Engineering, 2023, 228: 120482. DOI: 10.1016/j.applthermaleng.2023.120482.
|
4 |
杨小钰, 马文斌, 谢松. 高温环境轻微过放电对锂电池老化行为的影响[J/OL]. 北京航空航天大学学报. [2024-05-21]. https://doi.org/10.13700/j.bh.1001-5965.2023.0634.
|
|
YANG X Y, MA W B, XIE S. Influence of slight over-discharge on the aging behavior of lithium-ion batteries under high temperature environment[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. [2024-05-21]. https://doi.org/10.13700/j.bh.1001-5965.2023.0634.
|
5 |
陈现涛, 李雨泽, 邹晓龙, 等. 不同热处理次数对软包锂离子电池热安全性影响[J]. 科学技术与工程, 2022, 22(4): 1719-1724. DOI: 10.3969/j.issn.1671-1815.2022.04.055.
|
|
CHEN X T, LI Y Z, ZOU X L, et al. Effect of different times of heat treatment on thermal safety of soft pack lithium-ion battery[J]. Science Technology and Engineering, 2022, 22(4): 1719-1724. DOI: 10.3969/j.issn.1671-1815.2022.04.055.
|
6 |
JIANG M, WU J G, ZHANG W A, et al. Empirical Gramian-based spatial basis functions for model reduction of nonlinear distributed parameter systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2018, 24(3): 258-274. DOI: 10.1080/13873954.2018.1446448.
|
7 |
FAN Y J, XU K K, WU H, et al. Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network[J]. IEEE Access, 2020, 8: 25111-25121. DOI: 10.1109/ACCESS.2020.2970836.
|
8 |
XU K K, LI H X, YANG H D. Local-properties-embedding-based nonlinear spatiotemporal modeling for lithium-ion battery thermal process[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9767-9776. DOI: 10.1109/TIE.2018.2818645.
|
9 |
XU K K, LI H X, LIU Z. ISOMAP-based spatiotemporal modeling for lithium-ion battery thermal process[J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 569-577. DOI: 10.1109/TII.2017.2743260.
|
10 |
LIU Z, LI H X. Extreme learning machine based spatiotemporal modeling of lithium-ion battery thermal dynamics[J]. Journal of Power Sources, 2015, 277: 228-238. DOI: 10.1016/j.jpowsour. 2014.12.013.
|
11 |
金熹. 分布参数系统时空建模方法研究及其应用[D]. 广州: 广东工业大学, 2023.
|
|
JIN X. Research and application of spatio-temporal modeling method for distributed parameter system[D]. Guangzhou: Guangdong University of Technology, 2023.
|
12 |
ANOWAR F, SADAOUI S, SELIM B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)[J]. Computer Science Review, 2021, 40: 100378. DOI: 10.1016/J.COSREV. 2021.100378.
|
13 |
朱成就. 面向工业热过程的智能时空建模方法研究[D]. 广州: 广东工业大学, 2023.
|
|
ZHU C J. Research on intelligent spatio-temporal modeling method for industrial thermal process[D]. Guangzhou: Guangdong University of Technology, 2023.
|
14 |
CHEN W X, YANG K X, YU Z W, et al. Double-kernel based class-specific broad learning system for multiclass imbalance learning[J]. Knowledge-Based Systems, 2022, 253: 109535. DOI: 10.1016/j.knosys.2022.109535.
|
15 |
LYU L, WANG W H, ZHANG Z Y, et al. A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine[J]. Knowledge-Based Systems, 2020, 195: 105648. DOI: 10.1016/j.knosys.2020.105648.
|
16 |
MCINNES L, HEALY J, MELVILLE J. UMAP: Uniform manifold approximation and projection for dimension reduction[EB/OL]. 2018: 1802. 03426. [2024-02-05]. https://arxiv.org/abs/1802. 03426v3
|
17 |
GHOJOGH B, GHODSI A, KARRAY F, et al. Uniform manifold approximation and projection (UMAP) and its variants: Tutorial and survey[EB/OL]. 2021: 2109.02508. [2024-02-05]. https://arxiv.org/abs/2109.02508v1
|
18 |
夏丽莎, 方华京. 改进的加权t-SNE算法及在故障诊断中的应用[J]. 计算机应用研究, 2020, 37(7): 2078-2081. DOI: 10.19734/j.issn.1001-3695.2018.12.0952.
|
|
XIA L S, FANG H J. Improved weighted t-SNE algorithm and application in fault diagnosis[J]. Application Research of Computers, 2020, 37(7): 2078-2081. DOI: 10.19734/j.issn.1001-3695.2018.12.0952.
|
19 |
CHEN C L P, LIU Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24. DOI: 10.1109/TNNLS. 2017.2716952.
|
20 |
周汉胜, 李泽瑞, 周金华. 基于单类分类方法的道路高排放源识别算法[J]. 传感器与微系统, 2023, 42(1): 140-143, 148. DOI: 10.13873/J.1000-9787(2023)01-0140-04.
|
|
ZHOU H S, LI Z R, ZHOU J H. Algorithm of on-road high-emitters identification based on one-class classification method[J]. Transducer and Microsystem Technologies, 2023, 42(1): 140-143, 148. DOI: 10.13873/J.1000-9787(2023)01-0140-04.
|
21 |
吕洲, 何波, 黄镇泽, 等. 基于LE-ELM的锂电池热过程时空建模方法[J]. 储能科学与技术, 2022, 11(10): 3200-3208. DOI: 10.19799/j.cnki.2095-4239.2022.0030.
|
|
LYU Z, HE B, HUANG Z Z, et al. LE-ELM-based spatiotemporal modeling method of lithium battery thermal process[J]. Energy Storage Science and Technology, 2022, 11(10): 3200-3208. DOI: 10.19799/j.cnki.2095-4239.2022.0030.
|