1 |
韦媚媚, 项定先. 储能技术应用与发展趋势[J]. 工业安全与环保, 2023, 49(S1): 4-12.
|
|
WEI M M, XIANG D X. Industrial Safety and Environmental Protection, 2023, 49(S1): 4-12.
|
2 |
TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: 105226. DOI:10.1016/j.est. 2022. 105226.
|
3 |
夏焱, 万继方, 李景翠, 等. 重力储能技术研究进展[J]. 新能源进展, 2022, 10(3): 258-264. DOI:10.3969/j.issn.2095-560X.2022. 03.010.
|
|
XIA Y, WAN J F, LI J C, et al. Research progress of gravity energy storage technology[J]. Advances in New and Renewable Energy, 2022, 10(3):258-264. DOI:10.3969/j.issn.2095-560X. 2022.03.010.
|
4 |
王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI:10.19799/j.cnki.2095-4239. 2021.0590.
|
|
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. DOI:10.19799/j.cnki.2095-4239.2021. 0590.
|
5 |
HUNT J, ZAKERI B, JURASZ J, et al. Underground gravity energy storage: A solution for long-term energy storage[J]. Energies, 2023, 16(2): 825. DOI:10.3390/en16020825.
|
6 |
CHATURVEDI D K, YADAV S, SRIVASTAVA T, et al. Electricity storage system: A gravity battery[C]//2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). July 27-28, 2020, London, UK. IEEE, 2020: 412-416. DOI:10.1109/WorldS450073.2020.9210321.
|
7 |
刘志强, 宋朝阳. 闭坑矿井竖井井筒开发再利用科学探索[J]. 煤炭科学技术, 2019, 47(1): 18-24. DOI:10.13199/j.cnki.cst.2019.01.003.
|
|
LIU Z Q, SONG Z Y. Scientific exploration of development and reutilization of vertical shafts in closed mines[J]. Coal Science and Technology, 2019, 47(1): 18-24. DOI:10.13199/j.cnki.cst.2019.01.003.
|
8 |
杨彦群, 刘钦节, 周京军, 等. 一种用于废弃煤矿重力储能系统及布置方法: CN116207869A[P]. 2023-06-02.
|
9 |
邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(3): 934-945. DOI:10.19799/j.cnki.2095-4239.2023.0789.
|
|
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789.
|
10 |
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. DOI:10.1016/j.apenergy. 2019.01.226.
|
11 |
张正秋, 武安, 张海川. 一种依托煤矿矿井的重力储能系统: CN209676010U[P]. 2019-11-22.
|
12 |
宋立平, 董宝光, 王东军, 等. 一种基于矿井立井筒、提升、运输系统的重力储能系统: CN109665430A[P]. 2019-04-23.
|
13 |
秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. DOI:10.19799/j.cnki.2095-4239.2022.0634.
|
|
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. DOI:10.19799/j.cnki.2095-4239.2022.0634.
|
14 |
ESTEBAN E, SALGADOO O, ITURROSPE A, et al. Model-based estimation of elevator rail friction forces[C].Springer International Publishing.Springer International Publishing, 2016.DOI:10.1007/978-3-319-20463-5_27.
|