储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 515-525.doi: 10.19799/j.cnki.2095-4239.2023.0580

• 储能系统与工程 • 上一篇    下一篇

基于电池箱体开孔的储能电池系统精细化热设计优化研究

徐鑫甜1(), 张碧霄2, 朱信龙1(), 杨凯杰1   

  1. 1.南京航空航天大学航空学院,江苏 南京 210016
    2.江苏科技大学能源与动力学院,江苏 镇江 212003
  • 收稿日期:2023-08-28 修回日期:2023-10-11 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 朱信龙 E-mail:xuxintian@nuaa.edu.cn;zxl720616@nuaa.edu.cn
  • 作者简介:徐鑫甜(1999—),女,硕士研究生,研究方向为人机与环境工程,E-mail:xuxintian@nuaa.edu.cn
  • 基金资助:
    飞行器环境控制与生命保障工信部重点实验室开放课题项目(KLAECLS-E-202201)

Refined thermal design optimization of energy storage battery system based on battery box openings

Xintian XU1(), Bixiao ZHANG2, Xinlong ZHU1(), Kaijie YANG1   

  1. 1.College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
    2.College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Received:2023-08-28 Revised:2023-10-11 Online:2024-02-28 Published:2024-03-01
  • Contact: Xinlong ZHU E-mail:xuxintian@nuaa.edu.cn;zxl720616@nuaa.edu.cn

摘要:

针对当前储能电池系统热管理仿真研究存在忽略电池堆内部结构对热性能影响的问题,本文引入了精细化热设计理念,提出了一种基于电池箱体开孔的温度均匀性调配方法,并借助计算流体力学(CFD)仿真模拟方法,系统考虑了开孔数量和大小对电池热性能的影响,并从中筛选出优化的电池盒设计方案。研究结果表明,在针对单个电池盒的优化中,相较于在上壁面开孔,通过在侧壁开孔能够获得更为优越的性能。这一优势在于,单个电池的温差从过去的6.01 K降低至3.68 K,降幅达28.2%,从而充分满足了电池的散热需求。进一步地,在整个电池堆层面,通过在侧壁开孔的方式,得以将单列电池架内的最大温差从7.66 K减少至4.32 K,大幅度提升了43.6%。该研究结果在电池堆外风管与电池箱内部结构方面进行了耦合热求解,为未来储能电池系统的热管理策略提供了有益的参考。

关键词: 储能电池, 温差, 开孔, 热管理, 电池芯

Abstract:

This study addresses the issue of neglecting the impact of internal battery cell structures on the thermal performance of energy storage battery systems in current thermal management simulation studies. This study introduces a refined thermal design concept, proposing a temperature uniformity distribution approach based on perforations in the battery pack enclosure. This study utilizes computational fluid dynamics simulation methodology to comprehensively assess the influence of perforation sizes and quantities on battery thermal performance. Subsequently, optimized designs for the battery enclosure are selected. The research findings reveal that, in optimizing individual battery enclosures, superior performance is achieved by introducing perforations on the lateral walls rather than the upper surface. This advantageous strategy reduces the temperature difference within a single battery from a prior 6.01 to 3.68 K, resulting in a substantial 28.2% decrease and effectively meeting the heat dissipation requirements of the battery. Moreover, at the scale of the entire battery stack, the implementation of lateral wall perforations leads to a substantial reduction in the maximum temperature difference within a single column of battery cells from 7.66 K to 4.32 K, representing an impressive enhancement of 43.6%. Through a coupled thermal analysis of the external air ducts and the internal structure of the battery pack, this study provides valuable insights for future thermal management strategies in energy storage battery systems.

Key words: energy storage battery, temperature difference, opening pore, heat dissipation, battery cell

中图分类号: