储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3534-3544.doi: 10.19799/j.cnki.2095-4239.2024.0186

• 储能系统与工程 • 上一篇    下一篇

储能锂电池包浸没式液冷系统散热设计及热仿真分析

李岳峰1,2(), 徐卫潘1,2, 韦银涛1,2, 丁纬达1,2, 孙勇1,2, 项峰1,2, 吕游1,2, 伍家祥1,2, 夏艳1,2   

  1. 1.运达能源科技集团股份有限公司,浙江 杭州 310012
    2.浙江省风力发电技术重点实验室,浙江 杭州 310000
  • 收稿日期:2024-03-05 修回日期:2024-03-18 出版日期:2024-10-28 发布日期:2024-10-30
  • 通讯作者: 李岳峰 E-mail:lyf0304@mail.ustc.edu.cn
  • 基金资助:
    浙江省科学技术厅项目(2023C01123)

Thermal design and simulation analysis of an immersing liquid cooling system for lithium-ions battery packs in energy storage applications

Yuefeng LI1,2(), Weipan XU1,2, Yintao WEI1,2, Weida DING1,2, Yong SUN1,2, Feng XIANG1,2, You LYU1,2, Jiaxiang WU1,2, Yan XIA1,2   

  1. 1.Windey Energy Technology Group Co. , Ltd. , Hangzhou 310012, Zhejiang, China
    2.Key Laboratory of Wind Power Technology of Zhejiang Province, Hangzhou 310000, Zhejiang, China
  • Received:2024-03-05 Revised:2024-03-18 Online:2024-10-28 Published:2024-10-30
  • Contact: Yuefeng LI E-mail:lyf0304@mail.ustc.edu.cn

摘要:

作为最主流的储能电池液冷技术,间接冷板冷却技术相比风冷技术虽然实现了在电池换热和均温效果上的突破,但仍存在着电芯顶底区域温差过大、液冷管路循环阻力过大和功耗过高等问题。为解决这些问题,本工作以某型电池包作为研究对象,设计了一种新型的直接浸没式电池包冷却系统,即采用直接浸没式冷却技术将电池包直接置于冷却液中冷却。通过数值仿真对该浸没式系统进行了温度场和流场特性的评估,并与冷板式冷却系统进行对比。接着分别探究了浸没冷却液流量、电芯间距和喷射孔数量对于浸没电池包温度场的影响。研究发现:相比于冷板冷却系统,浸没式冷却系统下电池包顶面最高温度和最大温差均明显下降,系统整体冷却性能显著提升;同时浸没电芯顶底区域最大温差大幅度缩小,有效解决了冷板冷却时存在的顶底区域温差过大的问题;随着冷却液流量和电芯间距的增加,电池包顶面最高温度和最大温差均不同程度下降,但其温度下降率逐渐下降;喷射孔数量的增加使得电池包顶面最高温度略微下降,但最大温差明显提升。

关键词: 储能电池包, 直接浸没式冷却, 热特性

Abstract:

Indirect liquid cold plate cooling technology has become the most prevalent method for thermal management in energy storage battery systems, offering significant improvements in heat transfer and temperature uniformity compared to air cooling. However, challenges such as excessive temperature gradients between the top and bottom of battery cells, high circulation resistance, and elevated power consumption in the cooling pipeline remain unresolved. In order to solve these problems, this study focuses on a novel direct immersing liquid cooling system, where the battery pack is fully submerged in a cooling liquid. Numerical simulations were conducted to evaluate the temperature distribution and flow characteristics of this immersive cooling system and compare them with a traditional cold plate system. The study further explores the effects of variables such as immersing cooling liquid flow rate, cell distance, and the number of ejection holes on the thermal performance of the immersing battery pack. The research shows that, in comparison with cold plate cooling, the direct immersion system significantly reduces both the maximum temperature and temperature gradients on the top surface of the battery pack, therefore enhancing overall cooling efficiency. At the same time, the temperature difference between the top and bottom of the battery cells significantly decreases, effectively addressing the thermal gradient issue inherent in cold plate systems. With the increase of cooling liquid flow rate and cell distance, the maximum temperature and temperature difference on the top surface of the battery pack decrease to varying degrees, albeit at a diminishing rate. While increasing the number of ejection holes decreases the maximum temperature, it also noticeably increases the temperature gradient across the pack.

Key words: energy storage battery pack, direct immersing cooling, thermal characteristics

中图分类号: