1 |
周慧琳, 邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报(工学版), 2019, 49(4): 99-107. DOI: 10.6040/j.issn.1672-3961.0.2019.018.
|
|
ZHOU H L, QIU Y. Phase change characteristics of paraffin in rectangular storage unit[J]. Journal of Shandong University (Engineering Science), 2019, 49(4): 99-107. DOI: 10.6040/j.issn.1672-3961.0.2019.018.
|
2 |
HE X B, QIU J, WANG W, et al. A review on numerical simulation, optimization design and applications of packed-bed latent thermal energy storage system with spherical capsules[J]. Journal of Energy Storage, 2022, 51: 104555. DOI: 10.1016/j.est.2022.104555.
|
3 |
胡茜芮, 张朝阳, 洪芳军. 高温相变胶囊梯级储热系统实验研究[J]. 储能科学与技术, 2023, 12(8): 2526-2535. DOI: 10.19799/j.cnki.2095-4239.2023.0122.
|
|
HU X R, ZHANG C Y, HONG F J. Experimental study of high-temperature phase change capsule gradient heat storage system[J]. Energy Storage Science and Technology, 2023, 12(8): 2526-2535. DOI: 10.19799/j.cnki.2095-4239.2023.0122.
|
4 |
PEIRÓ G, GASIA J, MIRÓ L, et al. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage[J]. Renewable Energy, 2015, 83: 729-736. DOI: 10.1016/j.renene.2015.05.029.
|
5 |
封冠男. 相变微胶囊流体的储热及传热特性实验研究[D]. 北京: 华北电力大学, 2018.
|
|
FENG G N. Experimental study on heat storage and heat transfer characteristics of phase change microcapsule fluid[D]. Beijing: North China Electric Power University, 2018.
|
6 |
SHAMSHIRI M, JAFARI R, MOMEN G. An intelligent icephobic coating based on encapsulated phase change materials (PCM)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130157. DOI: 10.1016/j.colsurfa.2022.130157.
|
7 |
戴晓丽, 王登云, 陈振乾, 等. 球形相变胶囊内凝固传热过程数值模拟[J]. 工程热物理学报, 2013, 34(4): 715-719.
|
|
DAI X L, WANG D Y, CHEN Z Q, et al. Numerical simulation on solidification heat transfer of spherical phase change capsule[J]. Journal of Engineering Thermophysics, 2013, 34(4): 715-719.
|
8 |
赵奕萌, 付锐朋, 张嘉杰, 等. 相变微胶囊单体熔化传热过程研究[J]. 工程热物理学报, 2015, 36(7): 1505-1509.
|
|
ZHAO Y M, FU R P, ZHANG J J, et al. Phase change study of spherical phase change microcapsule[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1505-1509.
|
9 |
MAO Q J, ZHANG Y M. Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system[J]. Renewable Energy, 2020, 152: 110-119. DOI: 10.1016/j.renene.2020.01.051.
|
10 |
MAJUMDAR R, SAHA S K. Computational study of performance of cascaded multi-layered packed-bed thermal energy storage for high temperature applications[J]. Journal of Energy Storage, 2020, 32: 101930. DOI: 10.1016/j.est.2020.101930.
|
11 |
RAUL A, JAIN M, GAIKWAD S, et al. Modelling and experimental study of latent heat thermal energy storage with encapsulated PCMs for solar thermal applications[J]. Applied Thermal Engineering, 2018, 143: 415-428. DOI: 10.1016/j.applthermaleng.2018.07.123.
|
12 |
MOHAMMADNEJAD F, HOSSAINPOUR S. A CFD modeling and investigation of a packed bed of high temperature phase change materials (PCMs) with different layer configurations[J]. Journal of Energy Storage, 2020, 28: 101209. DOI: 10.1016/j.est.2020.101209.
|
13 |
梁猛. 相变蓄热胶囊级联堆积床优化布置研究[D]. 吉林: 东北电力大学, 2023. DOI: 10.27008/d.cnki.gdbdc.2023.000254.
|
|
LIANG M. Study on optimal layout of cascade stacking bed of phase change thermal storage capsules[D]. Jilin: Northeast Dianli University, 2023. DOI: 10.27008/d.cnki.gdbdc.2023.000254.
|
14 |
党昕, 孟多, 高慧. 焓法与显热容法在建筑相变蓄热技术数值模拟中的应用[J]. 辽宁工业大学学报(自然科学版), 2021, 41(3): 188-194. DOI: 10.15916/j.issn1674-3261.2021.03.013.
|
|
DANG X, MENG D, GAO H. Application of enthalpy method and apparent heat capacity method in numerical simulation for phase change heat storage technology in buildings[J]. Journal of Liaoning University of Technology (Natural Science Edition), 2021, 41(3): 188-194. DOI: 10.15916/j.issn1674-3261.2021.03.013.
|
15 |
GROULX D, BIWOLE P H. Solar PV passive temperature control using phase change materials[C]//Proceedings of the 15th International Heat Transfer Conference. August 10-15, 2014. Kyoto, Japan. Connecticut: Begellhouse, 2014: DOI: 10.1615/ihtc15.tmg.008886.
|
16 |
邹勇, 仇汝冬, 王霞. 石蜡相变材料蓄热过程的模拟研究[J]. 储能科学与技术, 2020, 9(1): 101-108. DOI: 10.12028/j.issn.2095-4239.2019.0166.
|
|
ZOU Y, QIU R D, WANG X. Simulation study on thermal storage process of paraffin phase change materials[J]. Energy Storage Science and Technology, 2020, 9(1): 101-108. DOI: 10.12028/j.issn.2095-4239.2019.0166.
|
17 |
刘永强. 相变蓄热胶囊及其堆积蓄热特性的数值研究[D]. 吉林: 东北电力大学, 2018.
|
|
LIU Y Q. Numerical study on phase change heat storage capsules and their accumulation heat storage characteristics[D]. Jilin: Northeast Dianli University, 2018.
|
18 |
万倩, 肖浩南, 钱京, 等. 泡沫铁对石蜡相变储热过程的影响[J]. 储能科学与技术, 2020, 9(1): 94-100. DOI: 10.12028/j.issn.2095-4239.2019.0161.
|
|
WAN Q, XIAO H N, QIAN J, et al. Influence of iron foam on paraffin phase change heat storage process[J]. Energy Storage Science and Technology, 2020, 9(1): 94-100. DOI: 10.12028/j.issn.2095-4239.2019.0161.
|
19 |
龙伟月, 曹晓玲, 袁艳平, 等. 内径尺寸对环形相变蓄热单元熔化特性影响规律的数值分析[J]. 太阳能学报, 2018, 39(6): 1502-1510. DOI: 10.19912/j.0254-0096.2018.06.004.
|
|
LONG W Y, CAO X L, YUAN Y P, et al. Numerical analysis of effect of inner diameter on melting characteristics of annular phase change heat storage unit[J]. Acta Energiae Solaris Sinica, 2018, 39(6): 1502-1510. DOI: 10.19912/j.0254-0096.2018.06.004.
|
20 |
刘兰兰, 雷广平, 吕鹏飞. 孔隙尺度相变微胶囊的储热特性研究[J]. 当代化工, 2022, 51(9): 2023-2029. DOI: 10.13840/j.cnki.cn21-1457/tq.2022.09.044.
|
|
LIU L L, LEI G P, LYU P F. Study on the heat storage properties of pore-scale spherical phase change microcapsule[J]. Contemporary Chemical Industry, 2022, 51(9): 2023-2029. DOI: 10.13840/j.cnki.cn21-1457/tq.2022.09.044.
|
21 |
柯彬彬. 圆管外石蜡相变传热过程数值模拟及传热强化[D]. 镇江: 江苏大学, 2016.
|
|
KE B B. Numerical simulation and heat transfer enhancement of paraffin phase change heat transfer process outside circular tube[D]. Zhenjiang: Jiangsu University, 2016.
|