1 |
程文姬, 赵磊, 郗航, 等. "十四五" 规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11): 181-188. DOI: 10.19666/j.rlfd. 202207125.
|
|
CHENG W J, ZHAO L, XI H, et al. Research on hydrogen energy policy and water-electrolytic hydrogen under the 14th Five-Year Plan[J]. Thermal Power Generation, 2022, 51(11): 181-188. DOI: 10.19666/j.rlfd.202207125.
|
2 |
李建林, 赵文鼎, 梁忠豪, 等. 基于混合电解槽制氢系统的功率分配技术[J/OL]. 电力系统自动化, 2024.(2024-03-23)[2024-04-01]. https://kns.cnki.net/kcms/detail/32.1180.TP.20240321.1035.008.html.
|
|
LI J L, ZHAO W D, LIANG Z H, et al. Power distribution technology based on hybrid electrolyzer hydrogen production system [J/OL]. Automation of Electric Power Systems, 2024.(2024-03-23) [2024-04-01]. https://kns.cnki.net/kcms/detail/32.1180.TP.20240321.1035.008.html.
|
3 |
袁铁江, 张红, 杨洋, 等. 新能源-PEM电解制氢全寿命经济性评估[J]. 中国电力, 2023, 56(3): 30-35, 46. DOI: 10.11930/j.issn.1004-9649.202104040.
|
|
YUAN T J, ZHANG H, YANG Y, et al. Whole life cycle economic assessment of renewable energy-PEM electrolyzer hydrogen production[J]. Electric Power, 2023, 56(3): 30-35, 46. DOI: 10.11930/j.issn.1004-9649.202104040.
|
4 |
李楠楠. 阴离子交换膜电解水制氢非碳基膜电极的研究[D]. 大连: 大连理工大学, 2022. DOI: 10.26991/d.cnki.gdllu.2022.001987.
|
|
LI N N. Study on non-carbon basement membrane electrode for hydrogen production by electrolysis of water with anion exchange membrane[D]. Dalian: Dalian University of Technology, 2022. DOI: 10.26991/d.cnki.gdllu.2022.001987.
|
5 |
赫亚庆, 张新燕, 王维庆, 等. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483.
|
|
HE Y Q, ZHANG X Y, WANG W Q, et al. Research on modeling and control method of high-temperature electrolytic hydrogen production system based on new energy absorption[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483.
|
6 |
王林, 刘晓莎, 胡平, 等. 固体氧化物电解槽辅助煤电机组深度调峰技术可行性研究[J]. 热力发电, 2024, 53(2): 133-141. DOI: 10. 19666/j.rlfd.202401001.
|
|
WANG L, LIU X S, HU P, et al. Feasibility study on deep peak shaving technology for SOEC assisted coal-fired power units[J]. Thermal Power Generation, 2024, 53(2): 133-141. DOI: 10.19666/j.rlfd.202401001.
|
7 |
郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(20): 185-199. DOI: 10.7500/AEPS 20201101004.
|
|
GUO X Q, WEI Y P, WAN Y M, et al. Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(20): 185-199. DOI: 10.7500/AEPS20201101004.
|
8 |
孔令国, 宫健, 杨士慧, 等. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. DOI: 10.12096/j.2096-4528.pgt.22187.
|
|
KONG L G, GONG J, YANG S H, et al. Development status and trend of DC/DC isolated hydrogen production power supply[J]. Power Generation Technology, 2023, 44(4): 443-451. DOI: 10. 12096/j.2096-4528.pgt.22187.
|
9 |
SCHUMANN M, COSSE C, BECKER D, et al. Modeling and experimental parameterization of an electrically controllable PEM fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(56): 28734-28747. DOI: 10.1016/j.ijhydene.2021.06.107.
|
10 |
DOBÓ Z, PALOTÁS Á B. Impact of the current fluctuation on the efficiency of Alkaline Water Electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5649-5656. DOI: 10.1016/j.ijhydene.2016.11.142.
|
11 |
季清, 阮新波, 谢立宏, 等. 平均电流控制的Boost PFC变换器最恶劣传导EMI频谱分析[J]. 中国电机工程学报, 2014, 34(6): 982-992. DOI: 10.13334/j.0258-8013.pcsee.2014.06.021.
|
|
JI Q, RUAN X B, XIE L H, et al. Analysis of the worst conducted EMI spectrum of the average current controlled boost PFC converter[J]. Proceedings of the CSEE, 2014, 34(6): 982-992. DOI: 10.13334/j.0258-8013.pcsee.2014.06.021.
|
12 |
汪莉丽. 峰值电流模式控制Boost PFC变换器斜波补偿设计[J]. 电源技术, 2012, 36(3): 384-387. DOI: 10.3969/j.issn.1002-087X. 2012.03.028.
|
|
WANG L L. Slope compensation design in peak current mode controlled PFC boost converter[J]. Chinese Journal of Power Sources, 2012, 36(3): 384-387. DOI: 10.3969/j.issn.1002-087X. 2012.03.028.
|
13 |
宋卫章, 黄骏, 钟彦儒, 等. 带中点电位平衡控制的Vienna整流器滞环电流控制方法[J]. 电网技术, 2013, 37(7): 1909-1914. DOI: 10.13335/j.1000-3673.pst.2013.07.033.
|
|
SONG W Z, HUANG J, ZHONG Y R, et al. A hysteresis current control method with neutral point potential balancing control for Vienna rectifier[J]. Power System Technology, 2013, 37(7): 1909-1914. DOI: 10.13335/j.1000-3673.pst.2013.07.033.
|
14 |
ZHONG Q C, NGUYEN P L, MA Z Y, et al. Self-synchronized synchronverters: Inverters without a dedicated synchronization unit[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 617-630. DOI: 10.1109/TPEL.2013.2258684.
|
15 |
吴佳骜. 基于虚拟同步发电机的控制策略在微电网中的研究及应用[D]. 长春: 长春工业大学, 2021. DOI: 10.27805/d.cnki.gccgy. 2021.000667.
|
|
WU J A. Research and application of control strategy based on virtual synchronous generator in microgrid[D]. Changchun: Changchun University of Technology, 2021. DOI: 10.27805/d.cnki.gccgy.2021.000667.
|
16 |
袁铁江, 张江飞, 滕越. 基于虚拟同步机的新能源制氢系统协调控制策略[J/OL]. 中国电机工程学报, (2023-08-11) [2024-05-02]. https://kns.cnki.net/kcms/detail/11.2107.TM.20230811.0904.002.html.
|
|
YUAN T J, ZHANG J F, TENG Y. Coordinated control strategy of the renewable energy hydrogen production system based on VSG [J/OL]. Proceedings of the CSEE, (2023-08-11) [2024-05-02]. https://kns.cnki.net/kcms/detail/11.2107.TM.20230811. 0904. 002.html.
|
17 |
吕志鹏, 梁英, 曾正, 等. 应用虚拟同步电机技术的电动汽车快充控制方法[J]. 中国电机工程学报, 2014, 34(25): 4287-4294. DOI: 10.13334/j.0258-8013.pcsee.2014.25.011.
|
|
LÜ Z P, LIANG Y, ZENG Z, et al. Virtual synchronous motor based control scheme of fast charger for electric vehicle application[J]. Proceedings of the CSEE, 2014, 34(25): 4287-4294. DOI: 10.13334/j.0258-8013.pcsee.2014.25.011.
|
18 |
王雪瑞, 曹鑫, 郝振洋. 基于虚拟同步机的三相整流器直接功率控制[J]. 电力电子技术, 2019, 53(6): 49-52.
|
|
WANG X R, CAO X, HAO Z Y. Direct power control of three-phase rectifier based on virtual synchronous machine[J]. Power Electronics, 2019, 53(6): 49-52.
|
19 |
游芳, 魏金成, 王嘉磊, 等. 基于VSG的新型三相PWM整流技术[J]. 电焊机, 2015, 45(6): 34-40. DOI: 10.7512/j.issn.1001-2303. 2015.06.09.
|
|
YOU F, WEI J C, WANG J L, et al. Research on technology of new three-phase PWM rectifier based on virtual synchronous generator[J]. Electric Welding Machine, 2015, 45(6): 34-40. DOI: 10.7512/j.issn.1001-2303.2015.06.09.
|
20 |
李佳佳, 俞兴伟, 洪挺. 适用于电动汽车充放电功能的虚拟同步机技术的研究[J]. 电测与仪表, 2021, 58(12): 39-48. DOI: 10.19753/j.issn1001-1390.2021.12.006.
|
|
LI J J, YU X W, HONG T. Research on virtual synchronous machine technology for electric vehicle charging and discharging function[J]. Electrical Measurement & Instrumentation, 2021, 58(12): 39-48. DOI: 10.19753/j.issn1001-1390.2021.12.006.
|
21 |
MARTIMEZ D, ZAMORA R. Electrical implementations of an empirical electrolyser model for improved Matlab/Simulink simulations[J]. International Journal of Renewable Energy Research, 2019, 9(2). DOI: 10.20508/ijrer.v9i2.9368.g7678.
|
22 |
钟瑞龙, 胡文, 黄泽毅. 基于改进型观测器的三相LCL型PWM整流器控制[J]. 电力电子技术, 2018, 52(5): 5-8, 12.
|
|
ZHONG R L, HU W, HUANG Z Y. LCL-type PWM rectifier control system based on improved state observer[J]. Power Electronics, 2018, 52(5): 5-8, 12.
|
23 |
XIAO H G. A modular low current ripple electrolysis power supply based on multiphase half-bridge high-frequency inverters[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10088-10096. DOI: 10.1109/TPEL.2020.2978340.
|
24 |
贺明智, 谭杨, 孟鑫, 等. 兼具高可靠性、高效率的大功率电解制氢电源研究[J/OL]. 电源学报, (2023-06-19) [2024-04-02]. https://kns.cnki.net/kcms/detail/12.1420.TM.20230619.1553.010.html.
|
|
HE M Z, TAN Y, MENG X, et al. Research on high-power hydrogen production power supply with high-reliability and high-efficiency[J/OL]. Journal of Power Supply, (2023-06-19) [2024-04-02]. https://kns.cnki.net/kcms/detail/12.1420.TM.20230619. 1553.010.html.
|
25 |
缪惠宇, 郑建勇, 顾盼盼, 等. 虚拟同步整流器的不平衡电压改进控制[J]. 电力工程技术, 2017, 36(5): 2-7. DOI: 10.19464/j.cnki.cn32-1541/tm.2017.05.002.
|
|
MIAO H Y, ZHENG J Y, GU P P, et al. Improved control of virtual synchronous rectifier with unbalanced voltage[J]. Electric Power Engineering Technology, 2017, 36(5): 2-7. DOI: 10.19464/j.cnki.cn32-1541/tm.2017.05.002.
|
26 |
范红, 董伟杰, 白晓民, 等. 基于虚拟同步电动机技术的变频器控制策略研究[J]. 中国电机工程学报, 2017, 37(15): 4446-4453, 4586. DOI: 10.13334/j.0258-8013.pcsee.162563.
|
|
FAN H, DONG W J, BAI X M, et al. A novel frequency-converter control strategy based on virtual synchronous motors[J]. Proceedings of the CSEE, 2017, 37(15): 4446-4453, 4586. DOI: 10.13334/j.0258-8013.pcsee.162563.
|
27 |
赵强, 张玉琼, 陈紫薇, 等. 计及储能的低惯量电力系统频率特性分析[J]. 中国电机工程学报, 2023, 43(3): 904-914. DOI: 10.13334/j.0258-8013.pcsee.221448.
|
|
ZHAO Q, ZHANG Y Q, CHEN Z W, et al. Frequency character istic analysis of low-inertia power system considering energy storage[J]. Proceedings of the CSEE, 2023, 43(3): 904-914. DOI: 10.13334/j.0258-8013.pcsee.221448.
|
28 |
田雪沁, 冯亚杰, 袁铁江, 等.考虑电氢负荷柔性的多堆电解槽优化运行[J/OL].电网技术,1-10[2024-05-21].https://doi.org/10.13335/j.1000-3673.pst.2023.1885.
|
|
TIAN X Q, FENG Y J, YUAN T J, et al. Optimize the operation of multi alkaline electrolyzers considering flexible electrical and hydrogen load [J/OL]. Power System Technology:1-10. [2024-05-21].https://doi.org/10.13335/j.1000-3673.pst.2023.1885.
|