荷电状态(state of charge, SOC)作为表征锂电池剩余电量的关键指标,其精确估计对于合理使用电池电量、保障电池安全具有重要意义。本文针对基于H∞滤波(H infinity filter, HIF)估计SOC时鲁棒性好但估计精度低的问题,提出一种自适应无迹H∞滤波(adaptive unscented H infinity filter, AU_HIF)SOC估计方法,以提高SOC估计精度。首先,选择能够在精度和复杂度间取得良好平衡的双极化(dual polarization, DP)等效电路模型进行新型估计算法的设计;其次,结合无迹卡尔曼滤波(unscented Kalman filter, UKF)算法相比于传统扩展卡尔曼滤波(extended Kalman filter, EKF)算法更适用于非线性系统状态估计的特点,文章基于先验误差协方差矩阵设计新型渐消因子,实现自适应无迹H∞滤波算法的设计,以减小陈旧测量值对估计结果的影响,提高滤波算法的跟踪能力及估计精度。最后,通过搭建自主实验平台获取实际模拟工况数据,验证了文章所提自适应无迹H∞滤波算法相比于传统H∞滤波算法、传统UKF算法和其他类型改进H∞滤波算法具有更高的估计精度及更好的鲁棒性。文章研究内容对提高新能源汽车、储能电站等电池系统的SOC估计精度具有重要意义。